Bardos, C.; Lebeau, G.; Rauch, J. Scattering frequencies and Gevrey 3 singularities. (English) Zbl 0723.35058 Invent. Math. 90, 77-114 (1987). Scattering frequences (or resonances) \((\mu_ k)\) for an exterior Dirichlet-Laplacian \(\Delta =\Delta_{\Omega}\) \((\Omega ={\mathbb{R}}^ n\setminus Q\) the complement of a compact obstacle) can be described in many different ways: (i) Poles of the analytic continuation of the Green function \((z^ 2-\Delta)^{-1}\) in the non-physical sheet; (ii) Asymptotic eigenmodes of the wave-equation (1) \(u_{tt}-\Delta u=0\), \(u|_{t=0}=f\), \(u_ t|_{t=0}=g\), with compactly supported initial data; any such u can be expanded into the series u(x,t)\(\simeq \sum e^{\mu_ kt}\psi_ k(x)\), as \(t\to \infty\), where \(\psi =\psi_ k\) solves the reduced equation \((\Delta -\mu^ 2_ k)\psi =0\), subject to the Sommerfeld radiation condition at \(\infty\); (iii) Eigenvalues of the Lax-Phillips “incoming-outgoing” semigroup \(Z(t)=e^{tB}\). An interesting problem related to \(\{\mu_ k\}\) is the behavior of Re \(\mu\) \({}_ k\) as \(| \mu_ k| \to \infty\). P. D. Lax and R. S. Phillips [Arch. Ration. Mech. Anal. 40, 268-280 (1971; Zbl 0216.130)] showed that (2) Re \(\mu\) \({}_ k\leq -C \log | \mu_ k|\) for all nontrapping smooth obstacles, and linked (2) to propagation of singularities of the wave-equation, i.e., \(C^{\infty}\)-smoothness of u(x,t). G. Lebeau [Commun. Partial Differ. Equations 9, No.15, 1437-1494 (1984; Zbl 0559.35019)] improved the latter and showed that for analytic nontrapping obstacles Q, the solution u(x,t) belongs to the quasianalytic Gevrey class 3, i.e., \(\partial^ ku=O(k!^ 3)\). This yields the estimate (3) Re \(\mu\) \({}_{kj}\leq C| \mu_{kj}|^{-1/3}\). The authors prove that estimate (3) is optimal, i.e., (4) Re \(\mu\) \({}_{k_ j}\geq -C| \mu_{k_ j}|^{-1/3}\) holds for certain subsequences of \(\{\mu_ k\}\). Furthermore, they link the constant C in the RHS of (4) and a subsequence \(\{\mu_{k_ j}\}\) to a stable closed geodesic \(\gamma\subset \partial \Omega\), namely \[ C=C_{\gamma}=const \cos (\pi /6)/(2^{1/3}T)\int^{T}_{0}\rho^{2/3}(s)ds, \] where \(T=``length\) of \(\gamma\) ”, s is the arclength parameter along \(\gamma\), and \(\rho\) (s) is the curvature of \(\gamma\). Cited in 2 ReviewsCited in 21 Documents MSC: 35P25 Scattering theory for PDEs 35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation 35L05 Wave equation Keywords:Scattering frequences; resonances; propagation of singularities Citations:Zbl 0216.130; Zbl 0559.35019 PDFBibTeX XMLCite \textit{C. Bardos} et al., Invent. Math. 90, 77--114 (1987; Zbl 0723.35058) Full Text: DOI EuDML References: [1] [B.G.R.] Bardos, C., Guillot, J.-C., Ralston, J.: La relation de Poisson pour l’équation des ondes dans un ouvert non borné. Application à la théorie de la diffusion. Commun. Partial Differ. Equations7, (8) 905-958 (1982) · Zbl 0496.35067 · doi:10.1080/03605308208820241 [2] [B.L.R.] Bardos, C., Lebeau, G., Rauch, J.: Méthodes semi classiques en mécaniques quantique. 1984. Publications de l’Université de Nantes [3] [BdM.] Boutet de Monvel, L.: Séminaire. Opérateurs Pseudodifférentiels Analytiques, Grenoble, 1975 [4] [C.] Chazarain, J.: Formule de Poisson pour les variétés riemaniennes. Invent. Math.24, 65-82 (1974) · Zbl 0281.35028 · doi:10.1007/BF01418788 [5] [D.G.] Duistermaat, J.-J., Guillemin, V.: The spectrum of positive elliptic operators and periodic geodesics. Invent. Math.24, 39-80 (1975) · Zbl 0307.35071 · doi:10.1007/BF01405172 [6] [G.] Goodhue, W.: Scattering theory for hyperbolic systems with coefficients of Gevrey type. Trans. Am. Math. Soc.180, 337-346 (1973) · Zbl 0266.47009 · doi:10.1090/S0002-9947-1973-0415094-5 [7] [H.1] Hörmander, L.: Fourier integral operators. I. Acta Math.127, 79-183 (1971) · Zbl 0212.46601 · doi:10.1007/BF02392052 [8] [H.2] Hörmander, L.: The Analysis of linear partial differential operators 1. Lect. Notes Math., Vol. 256. Berlin-Heidelberg-New York: Springer 1983 · Zbl 0521.35002 [9] [L.] Lax, P.D.: Asymptotic solutions of initial value problems. Duke Math.J.24, 627-646 (1957) · Zbl 0083.31801 · doi:10.1215/S0012-7094-57-02471-7 [10] [LP.1] Lax, P.D., Phillips, R.S.: Scattering theory. New York: Academic Press 1967 · Zbl 0214.12002 [11] [LP.2] Lax, P.D., Phillips, S.R.: A logarithmic bound on the location of the poles of the scattering mat. Arch. Rat. Mech. Anal.40, 268-280 (1971) · Zbl 0216.13002 · doi:10.1007/BF00252678 [12] [L.1] Lebeau, G.: Deuxième microlocalisation sur les sous-variétés isotropes. Ann. Inst. Fourier35, (2) 145-216 (1985) · Zbl 0539.58038 [13] [L.2] Lebeau, G.: Régularité Gevrey trois pour la diffraction. Commun. Partial Differ. Equations9, (15) 1437-1494 (1984) · Zbl 0559.35019 · doi:10.1080/03605308408820368 [14] [L.3] Lebeau, G.: Propagation Gervey pour le problème mixte. Advanced in microlocal analysis, 1986 NATO ASI published by Reidel (Garnir editor) [15] [M.1] Melrose, R.: Singularities and energy decay in acoustical scattering. Duke Math. J.46, (1) 43-59 (1979) · Zbl 0415.35050 · doi:10.1215/S0012-7094-79-04604-0 [16] [M.2] Melrose, R.: Polynomial bound on the number of scattering poles. J. Funct. Anal.53,287-303 (1983); also Proc. of St.Jean de Monts 1984 seminar · Zbl 0535.35067 · doi:10.1016/0022-1236(83)90036-8 [17] [M.S.] Melrose, R., Sjostrand, J.: Singularities of boundary value problems I and II. Commun. Pure Appl. Math.31, 595-617 (1978);35, 129-168 (1982) · doi:10.1002/cpa.3160310504 [18] [P] Popov, G.: Estimates near the shadow and poles of the S. matrix. (Preprint) [19] [S.K.K.] Sato, M., Kawai, T., Kashiwara, M.: Microfunctions and pseudo differential equations. Lect. Notes Math., Vol. 287. Berlin-Heidelberg-New York: Springer 1973 · Zbl 0277.46039 [20] [S.1] Sjöstrand, J.: Singularités analytiques microlocales. Astérisque95, 1-166 (1982) [21] [S.2] Sjöstrand, J.: Propagation of analytic singularities for second order Dirichlet problems. Commun. Partial Differ. Equations5, (1) 41-94 (1980) · Zbl 0458.35026 · doi:10.1080/03605308008820133 [22] [R.S.] Rauch, J., Sjöstrand, J.: Propagation of analytic singularities along diffracted rays. Indiana Univ. Math. J.30, (3) 389-401 (1981) · doi:10.1512/iumj.1981.30.30030 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.