Volume et entropie minimale des espaces localement symétriques. (Minimal volume and entropy of locally symmetric spaces). (French) Zbl 0723.53029

M. Gromov [Publ. Math., Inst. Hautes Etud. Sci. 56, 5-99 (1982; Zbl 0516.53046)] introduced the concept of minimal volume of a Riemannian manifold, \(\min vol(M):=\inf \{Vol(M,g);\;|\) sectional curvature of \(g| \leq 1\}.\) The following questions are immediate: (i) which condition for a differentiable manifold M implies \(\min vol(M)=0\) and which \(\min vol(M)\neq 0?\) (ii) Do we have \(\min vol(M)=Vol(M,g)\) for some suitable metric g with \(|\) sectional curvature of \(g| \leq 1?\) M. Gromov also defined the invariant \(\| M\|:=\inf \{\sum | a_ i|;\;\sum a_ i\sigma_ i\) represents the fundamental class of M with \(a_ i\in {\mathbb{R}}\) and \(\sigma_ i\) being singular simplexes} and proved that for complete Riemannian manifolds, \((n-1)^ nn! \min vol(M)\geq \| M\|.\) He formulated the conjecture: for a manifold admitting a hyperbolic metric, hyp, with finite volume we have \(\min vol(M)=Vol(M,hyp).\)
One of the important aims of this paper is to give an approach to an answer to (ii). The authors consider a compact Riemannian manifold \((M,g_ 0)\) of dimension \(\geq 3\) being Einstein with negative sectional curvature or irreducible locally symmetric with non-positive sectional curvature, i.e. of non-compact type. They prove that there exists a neighbourhood U of \(g_ 0\) in the space of all Riemannian metrics on M such that:
A) \(K(g)\geq K(g_ 0)\) for \(g\in U,\) \(K(g)=\int_{M}| scal g|^{n/2}dv_ g,\) and the equality holds iff g is isometric to \(g_ 0\).
B) There exists a constant \(C(g_ 0)\) with \((d(g,g_ 0))^ 2\leq C(g_ 0)| K(g)-K(g_ 0)|\) for \(g\in U\), \(d(g,g_ 0)=\inf \{\| \phi^*(g)-g_ 0\|; \phi \in Diff(M).\)
C) \(Vol(g)\geq Vol(g_ 0)\) when \(g\in U\) and \(scal(g)\geq scal(g_ 0).\) D) If M is compact, then \(n!(n-1)^ n\min vol(M)\geq n^{n/2}\| M\|.\)
Following Gromov the authors consider also the invariants \(h_ V(M,g):=\lim_{R\to \infty}((1/R)\log Vol(\tilde B(x,R))),\) where \(\tilde B(x,R)\) is the ball with center x and radius R in the universal Riemannian covering \((\tilde M,\tilde g)\) of \((M,g)\), and \(Min ent(M):=\inf \{h_ V(M,g);\;Vol(M,g)=1\}\) called minimal entropy. By means of an equivariant immersion of \((\tilde M,\tilde g)\) into the unit sphere of a Hilbert space the authors introduce a new topological invariant called the spherical volume of M and use it to prove the following conjecture due to Gromov: if M admits a locally symmetric metric \(g_ 0\) of non-compact type, then \(Min ent(M)=h_ V(M,g_ 0).\) The paper contains many interesting relationships among the minimal entropy, the minimal volume and the spherical volume as well.


53C23 Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces


Zbl 0516.53046
Full Text: DOI EuDML


[1] [Bav-Pan] Bavard, Ch., Pansu, P.: Le volume minimal deR 2. Ann. Sci. Ec. Norm. Super.19, 479-490 (1986) · Zbl 0611.53038
[2] [Be] Besse, A.: Einstein Manifolds, Ergebnisse der Math. und ihrer Grenzgebiete. Band 10. Berlin, Heidelberg, New York: Springer 1987 · Zbl 0613.53001
[3] [Be2] Besse, A.: Manifolds all of whose geodesics are closed, Ergebnisse der Math. und ihrer Grenzgebiete. Band 93. Berlin, Heidelberg, New York: Springer 1978 · Zbl 0387.53010
[4] [Bro] Brooks, R.: The fundamental group and the spectrum of the Laplacian. Comment. Math. Helv.56, 581-598 (1981) · Zbl 0495.58029
[5] [Din] Dinaburg, E.T.: On the relations among various entropy characteristics of dynamical systems. Math. USSR, Izv.5, 337-378 (1971) · Zbl 0248.58007
[6] [E-I] El Soufi, A., Ilias, S.: Operateurs de Shrödinger sur une variété riemannienne et volume conforme Grenoble: Prépublication de l’Institut Fourier no 83 (1987)
[7] [Eb] Ebin, D.: The space of riemannian metrics. Proc. Symp. Am. Math. Soc.15 Global Analysis 11-40 (1968)
[8] [Ga-Me] Gallot, S., Meyer, D.: Operateur de courbure et laplacien des formes différentielles d’une variété riemannienne. J. Math. Pures Appl.54, 259-284 (1975) · Zbl 0316.53036
[9] [Gro1] Gromov, M.: Volume and Bounded cohomology. Publ. Math. Inst. Hautes Étud. Sci.56, 213-307 (1981)
[10] [Gro2] Gromov, M.: Groups of polynomial growth and expanding maps. Publ. Math. Inst. Hautes Étud. Sci.53, 53-78 (1981) · Zbl 0474.20018
[11] [Gro3] Gromov, M.: Filling Riemannian Manifolds. J. Differ. Geom.18, 1-47 (1983) · Zbl 0515.53037
[12] [Gro-Laf-Pan] Gromov, M., Lafontaine, J., Pansu, P.: Structures métriques pour les variétés riemanniennes. Cedic: Fernand Nathan, 1981
[13] [Gui] Guivarc’h, Y.: Sur la représentation intégrale des fonctions harmoniques et des fonctions propres positives dans un espace riemannien symétrique. Bull. Soc. Math. Fr. 2e série,108, 373-392 (1984)
[14] [Ha] Hamenstädt, U.: Metric and topological entropy of geodesic flows. Caltech 1989 (Preprint)
[15] [Hel] Helgason, S.: Differential geometry and symmetric spaces. New York, London: Academic Press 1962 · Zbl 0111.18101
[16] [Ka-Kni-We] Katok, A., Knieper, G., Weiss, H.: Regularity of Topological Entropy (Preprint)
[17] [Kni] Knieper, G.: A second derivative formula of the measure theoretic entropy at spaces of constant negative curvature. Preprint Göttingen
[18] [Ko] Koiso, N.: A decomposition of the space of Riemannian Metrics on a Manifold. Osaka J. Math.16, 423-429 (1979) · Zbl 0416.58007
[19] [Kat] Katok, A.: Four applications of conformal equivalence to Geometry and Dynamics. Ergodic Theory Dyn. Syst.8, 139-152 (1988) · Zbl 0668.58042
[20] [Led] Ledrappier, F.: Harmonic measures and Bowen-Margulis measures. Univ. Paris VI (1988) (Preprint)
[21] [Man] Manning, A.: Topological entropy for geodesic flows. Ann. Math.110, 567-573 (1979) · Zbl 0426.58016
[22] [Ol] Olshanetski, M.A.: Frontière de Martin de l’opérateur de Laplace Beltrami sur les espaces riemanniens symétriques de courbure non positives. Math. Nauk. 1969
[23] [Pan] Pansu, P.: Effondrement des variétés riemanniennes. Séminaire Bourbaki, exposé 618 novembre 1983
[24] [Pes] Pesin, B.: Equations for the entropy of the geodesic flow on a compact riemanian manifold without conjugate points. Math. notes24, 796-805 (1978) · Zbl 0411.58016
[25] [Si] Simons, J.: On the transitivity of holonomy systems. Ann. Math.76, 213-234 (1962) · Zbl 0106.15201
[26] [Sun] Sunada, T.: Unitary representations of fundamental groups and the spectrum of twisted Laplacians. Topology,28, 2, 1-125 (1989) · Zbl 0681.53025
[27] [Zim] Zimmer, R.J.: Ergodic theory and semi-simple groups. Boston: Birkhäuser 1984
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.