×

zbMATH — the first resource for mathematics

The hypercomplex quotient and the quaternionic quotient. (English) Zbl 0723.53043
Quotient constructions are defined for hypercomplex and quaternionic manifolds that are analogous to those given for hyperkähler manifolds by N. J. Hitchin, A. Karlhede, U. Lindström and M. Roček [Commun. Math. Phys. 108, 535-589 (1987; Zbl 0612.53043)] and for quaternionic Kähler manifolds by K. Galicki and H. B. Lawson jun. [Math. Ann. 282, No.1, 1-21 (1988; Zbl 0628.53060)]. Poon’s metrics on \({\mathbb{C}}{\mathbb{P}}^ 2\#{\mathbb{C}}{\mathbb{P}}^ 2\) are an example of the latter. We define quaternionic complex manifolds to be manifolds with a torsion-free connection of holonomy SL(n,\({\mathbb{H}})U(1)\). In four dimensions the appropriate definition is that of a scalar-flat Kähler surface. Their basic properties are explored and a quotient construction and examples are given.
Reviewer: D.Joyce (Oxford)

MSC:
53C56 Other complex differential geometry
32C99 Analytic spaces
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Berger, M.: Sur les groupes d’holonomie homog?ne des vari?t?s ? connexion affines et des vari?t?s riemanniennes. Bull. Soc. Math. Fr.83, 279-330 (1955) · Zbl 0068.36002
[2] Boyer, C.: A note on hypehermitian four-manifolds. Proc. Am. Math. Soc.102, 157-164 (1988) · Zbl 0642.53073
[3] Galicki, K., Lawson, H.B.: Quaternionic reduction and quaternionic orbifolds. Math. Ann.282, 1-21 (1988) · Zbl 0628.53060 · doi:10.1007/BF01457009
[4] Hitchin, N.J., Karlhede, A., Lindstr?m, U., Ro?ek, M.: Hyperk?hler metrics and supersymmetry. Commun. Math. Phys.108, 535-589 (1987) · Zbl 0612.53043 · doi:10.1007/BF01214418
[5] LeBrun, C.: Counter-examples to the generalised positive action conjecture. Commun. Math. Phys.118, 591-596 (1988) · Zbl 0659.53050 · doi:10.1007/BF01221110
[6] LeBrun, C.: Explicit self-dual metrics on ??2 #...# ??2. Preprint, 1990 · Zbl 0711.53055
[7] Marsden, J., Weinstein, A.: Reduction of symplectic manifolds with symmetry. Rep. Math. Phys.5, 121-130 (1974) · Zbl 0327.58005 · doi:10.1016/0034-4877(74)90021-4
[8] Poon Y. Sun: Compact self-dual manifolds with positive scalar curvature. J. Differ. Geom.24, 97-132 (1986) · Zbl 0583.53054
[9] Pontecorvo, M.: On twistor spaces of anti-self-dual Hermitian surfaces. S.I.S.S.A. preprint, 1990 · Zbl 0754.53053
[10] Salamon, S. M.: Quaternionic K?hler manifolds. Ivent. Math.67, 153-171 (1982) · Zbl 0486.53048
[11] Salamon, S.M.: Riemannian geometry and holonomy groups. Pitman Research Notes201, 1989 · Zbl 0685.53001
[12] Salamon, S.M.: Differential geometry of quaternionic manifolds. Ann. Sci. ?c. Norm. sup?r. IV S?r.19, 31-55 (1986) · Zbl 0616.53023
[13] Swann, A.: Hyperk?hler and quaternionic K?hler geometry. University of Odense preprint, 1990
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.