Horocycle flow on geometrically finite surfaces. (English) Zbl 0723.58041

Suppose \(S=\Gamma \setminus D^ 2\) is a quotient of the Poincaré disc by a finitely generated discrete group \(\Gamma\) of orientation preserving isometries acting without fixed points on \(D^ 2\). The group of orientation preserving isometries of \(D^ 2\) is \(PSL(2,{\mathbb{R}})\) and the unit tangent bundle \(T_ 1S\) of S is a homogeneous space of \(PSL(2,{\mathbb{R}}):\) \(T_ 1S=\Gamma \setminus PSL(2,{\mathbb{R}}).\) The unipotent subgroup of PSL(2,\({\mathbb{R}})\), \(N=\{n(x)=\begin{pmatrix} 1&x \\ 0&1 \end{pmatrix}:\) \(x\in {\mathbb{R}}\}\) acts on \(T_ 1S\). The author determines all N-invariant Radon measures on \(T_ 1S\).


37D40 Dynamical systems of geometric origin and hyperbolicity (geodesic and horocycle flows, etc.)
53D25 Geodesic flows in symplectic geometry and contact geometry
58C35 Integration on manifolds; measures on manifolds
28C15 Set functions and measures on topological spaces (regularity of measures, etc.)
Full Text: DOI


[1] T. Aubin, Nonlinear analysis on manifolds. Monge-Ampère equations , Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 252, Springer-Verlag, New York, 1982. · Zbl 0512.53044
[2] N. Bourbaki, Topological vector spaces. Chapters 1-5 , Elements of Mathematics, Springer-Verlag, Berlin, 1987. · Zbl 0622.46001
[3] R. Brooks, The bottom of the spectrum of a Riemannian covering , J. Reine Angew. Math. 357 (1985), 101-114. · Zbl 0553.53027
[4] S. G. Dani, Invariant measures of horospherical flows on noncompact homogeneous spaces , Invent. Math. 47 (1978), no. 2, 101-138. · Zbl 0368.28021
[5] S. G. Dani, On invariant measures, minimal sets and a lemma of Margulis , Invent. Math. 51 (1979), no. 3, 239-260. · Zbl 0415.28008
[6] J. Dodziuk, T. Pignataro, B. Randol, and D. Sullivan, Estimating small eigenvalues of Riemann surfaces , The legacy of Sonya Kovalevskaya (Cambridge, Mass., and Amherst, Mass., 1985), Contemp. Math., vol. 64, Amer. Math. Soc., Providence, RI, 1987, pp. 93-121. · Zbl 0607.58044
[7] J. Dixmier, \(C^\ast\)-Algebras , North Holland, New York, 1982.
[8] H. Furstenberg, The unique ergodicity of the horocycle flow , Recent advances in topological dynamics (Proc. Conf., Yale Univ., New Haven, Conn., 1972; in honor of Gustav Arnold Hedlund), Springer, Berlin, 1973, 95-115. Lecture Notes in Math., Vol. 318. · Zbl 0256.58009
[9] E. Hopf, Ergodentheorie , Springer, Berlin, 1937. · JFM 63.0786.07
[10] R. E. Howe and C. C. Moore, Asymptotic properties of unitary representations , J. Funct. Anal. 32 (1979), no. 1, 72-96. · Zbl 0404.22015
[11] S. Lang, \(\mathrm SL_2(\mathbf R)\) , Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1975. · Zbl 0311.22001
[12] S. J. Patterson, The limit set of a Fuchsian group , Acta Math. 136 (1976), no. 3-4, 241-273. · Zbl 0336.30005
[13] M. Ratner, Invariant measures of unipotent translations on homogeneous spaces , Preprint, 1989. JSTOR: · Zbl 0819.22004
[14] D. Sullivan, The density at infinity of a discrete group of hyperbolic motions , Inst. Hautes Études Sci. Publ. Math. (1979), no. 50, 171-202. · Zbl 0439.30034
[15] D. Sullivan, Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups , Acta Math. 153 (1984), no. 3-4, 259-277. · Zbl 0566.58022
[16] D. Sullivan, Related aspects of positivity in Riemannian geometry , J. Differential Geom. 25 (1987), no. 3, 327-351. · Zbl 0615.53029
[17] S. T. Yau, Some function-theoretic properties of complete Riemannian manifold and their applications to geometry , Indiana Univ. Math. J. 25 (1976), no. 7, 659-670. · Zbl 0335.53041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.