×

zbMATH — the first resource for mathematics

Predicting disease-related genes by path structure and community structure in protein – protein networks. (English) Zbl 07232584

MSC:
82 Statistical mechanics, structure of matter
Software:
BioGRID
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Moreau, Y.; Tranchevent, L-C, Computational tools for prioritizing candidate genes: boosting disease gene discovery, Nat. Rev. Genet., 13, 523-536, (2012)
[2] Barabasi, A-L; Gulbahce, N.; Loscalzo, J., Network medicine: a network-based approach to human disease, Nat. Rev. Genet., 12, 56-68, (2011)
[3] Botstein, D.; Risch, N., Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease, Nat. Genet., 33, 228-237, (2003)
[4] Johnson, A. D.; O’Donnell, C. J., An open access database of genome-wide association results, BMC Med. Genet., 10, 1-17, (2009)
[5] McCarthy, M. I.; Abecasis, G. R.; Cardon, L. R.; Goldstein, D. B.; Little, J.; Ioannidis, J. P A.; Hirschhorn, J. N., Genome-wide association studies for complex traits: consensus, uncertainty and challenges, Nat. Rev. Genet., 9, 356-369, (2008)
[6] Tiffin, N.; Andrade-Navarro, M. A.; Perez-Iratxeta, C., Linking genes to diseases: it’s all in the data, Genome Med., 1, 1-7, (2009)
[7] van Driel, M. A.; Brunner, H. G., Bioinformatics methods for identifying candidate disease genes, Hum. Genom., 2, 1-4, (2006)
[8] Kann, M. G., Advances in translational bioinformatics: computational approaches for the hunting of disease genes, Brief. Bioinform., 11, 96-110, (2009)
[9] Piro, R. M.; Ala, U.; Molineris, I.; Grassi, E.; Bracco, C.; Perego, G. P.; Provero, P.; Di Cunto, F., An atlas of tissue-specific conserved coexpression for functional annotation and disease gene prediction, Eur. J. Hum. Genet., 19, 1173-1180, (2011)
[10] Liu, B.; Jin, M.; Zeng, P., Prioritization of candidate disease genes by combining topological similarity and semantic similarity, J. Biomed. Inform., 57, 1-5, (2015)
[11] Luo, J.; Liang, S., Prioritization of potential candidate disease genes by topological similarity of protein – protein interaction network and phenotype data, J. Biomed. Inform., 53, 229-236, (2015)
[12] Chen, B.; Wang, J.; Li, M.; Wu, F-X, Identifying disease genes by integrating multiple data sources, BMC Med. Genom., 7, S2, (2014)
[13] Fields, S.; Song, O-K, A novel genetic system to detect protein protein interactions, Nature, 340, 245-246, (1989)
[14] Navlakha, S.; Kingsford, C., The power of protein interaction networks for associating genes with diseases, Bioinformatics, 26, 1057-1063, (2010)
[15] Wu, S-Y; Shao, F-J; Sun, R-C; Sui, Y.; Wang, Y.; Wang, J-L, Analysis of human genes with protein – protein interaction network for detecting disease genes, Physica A, 398, 217-228, (2014)
[16] Li, M.; Zhang, J.; Liu, Q.; Wang, J.; Wu, F-X, Prediction of disease-related genes based on weighted tissue-specific networks by using DNA methylation, BMC Med. Genom., 7, S4, (2014)
[17] Sun, P. G.; Gao, L.; Han, S., Prediction of human disease-related gene clusters by clustering analysis, Int. J. Biol. Sci., 7, 61-73, (2011)
[18] Wu, S.; Shao, F.; Zhang, Q.; Ji, J.; Xu, S.; Sun, R.; Sun, G.; Du, X.; Sui, Y., Topology association analysis in weighted protein interaction network for gene prioritization, Physica A, 461, 262-269, (2016)
[19] Wang, X-D; Huang, J-L; Yang, L.; Wei, D-Q; Qi, Y-X; Jiang, Z-L, Identification of human disease genes from interactome network using graphlet interaction, PLoS One, 9, (2014)
[20] Goh, K-I; Cusick, M.; Valle, D.; Childs, B.; Vidal, M.; Barabási, A-L, The human disease network, Proc. Natl Acad. Sci., 104, 8685-8690, (2007)
[21] Oti, M.; Brunner, H. G., The modular nature of genetic diseases, Clin. Genet., 71, 1-11, (2007)
[22] Liu, W.; Sun, Z.; Xie, H., The analyses of human inherited disease and tissue-specific proteins in the interaction network, J. Biomed. Inform., 61, 10-18, (2016)
[23] Nitsch, D.; Gonçalves, J. P.; Ojeda, F.; de Moor, B.; Moreau, Y., Candidate gene prioritization by network analysis of differential expression using machine learning approaches, BMC Bioinform., 11, 1-16, (2010)
[24] Aiyar, R. S.; Gagneur, J.; Steinmetz, L. M., Identification of mitochondrial disease genes through integrative analysis of multiple datasets, Methods, 46, 248-255, (2008)
[25] Li, Z-C; Lai, Y-H; L-L, Chen; Xie, Y.; Dai, Z.; Zou, X-Y, Identifying and prioritizing disease-related genes based on the network topological features, Biochim. Biophys. Acta, 1844, 2214-2221, (2014)
[26] Srivastava, I.; Gahlot, L. K.; Khurana, P.; Hasija, Y., dbAARD & AGP: a computational pipeline for the prediction of genes associated with age related disorders, J. Biomed. Inform., 60, 153-161, (2016)
[27] Yousef, A.; Charkari, N. M., A novel method based on physicochemical properties of amino acids and one class classification algorithm for disease gene identification, J. Biomed. Inform., 56, 300-306, (2015)
[28] Xu, J.; Li, Y., Discovering disease-genes by topological features in human protein – protein interaction network, Bioinformatics, 22, 2800-2805, (2006)
[29] Oti, M.; Snel, B.; Huynen, M. A.; Brunner, H. G., Predicting disease genes using protein – protein interactions, J. Med. Genet., 43, 691-698, (2006)
[30] Hsu, C-L; Huang, Y-H; Hsu, C-T; Yang, U-C, Prioritizing disease candidate genes by a gene interconnectedness-based approach, BMC Genom., 12, 1-12, (2011)
[31] Zhu, C.; Kushwaha, A.; Berman, K.; Jegga, A. G., A vertex similarity-based framework to discover and rank orphan disease-related genes, BMC Syst. Biol., 6, 1-9, (2012)
[32] Gagneur, J.; Krause, R.; Bouwmeester, T.; Casari, G., Modular decomposition of protein – protein interaction networks, Genome Biol., 5, R57, (2004)
[33] Goh, K-I; Choi, I-G, Exploring the human diseasome: the human disease network, Brief. Funct. Genom., 11, 533-542, (2012)
[34] Fortunato, S., Community detection in graphs, Phys. Rep., 486, 75-174, (2010)
[35] Lewis, A.; Jones, N.; Porter, M.; Deane, C., The function of communities in protein interaction networks at multiple scales, BMC Syst. Biol., 4, 100, (2010)
[36] Keshava Prasad, T. S., Human protein reference database—2009 update, Nucleic Acids Res., 37, D767-D772, (2009)
[37] Stark, C.; Breitkreutz, B. J.; Reguly, T.; Boucher, L.; Breitkreutz, A.; Tyers, M., BioGRID: a general repository for interaction datasets, Nucleic Acids Res., 34, D535-D539, (2006)
[38] Wu, C., BioGPS: an extensible and customizable portal for querying and organizing gene annotation resources, Genome Biol., 10, R130, (2009)
[39] Su, A. I., A gene atlas of the mouse and human protein-encoding transcriptomes, Proc. Natl Acad. Sci. USA, 101, 6062-6067, (2004)
[40] The genotype-tissue expression (GTEx) pilot analysis: multitissue gene regulation in humans, Science, 348, 648-660, (2015)
[41] Su, W-H; Chao, C-C; Yeh, S-H; Chen, D-S; Chen, P-J; Jou, Y-S, OncoDB.HCC: an integrated oncogenomic database of hepatocellular carcinoma revealed aberrant cancer target genes and loci, Nucleic Acids Res., 35, D727-D731, (2007)
[42] Boccaletti, S.; Latora, V.; Moreno, Y.; Chavez, M.; Hwang, D-U, Complex networks: structure and dynamics, Phys. Rep., 424, 175-308, (2006)
[43] Xiang, J.; Hu, K.; Zhang, Y.; Hu, T.; Li, J-M, Analysis and perturbation of degree correlation in complex networks, Europhys. Lett., 111, 48003, (2015)
[44] McKusick, V. A., Mendelian inheritance in man and its online version, OMIM, Am. J. Hum. Genet., 80, 588-604, (2007)
[45] Xiang, J.; Hu, K.; Zhang, Y.; Bao, M-H; Tang, L.; Tang, Y-N; Gao, Y-Y; Li, J-M; Chen, B.; Hu, J-B, Enhancing community detection by using local structural information, J. Stat. Mech., (2016)
[46] Lü, L-Y; Zhou, T., Link prediction in complex networks: a survey, Physica A, 390, 1150-1170, (2011)
[47] Lei, C.; Ruan, J., A novel link prediction algorithm for reconstructing protein – protein interaction networks by topological similarity, Bioinformatics, 29, 355-364, (2013)
[48] Simone, D.; Maria, T. J.; Claudio, D.; Vittorio, C. C., Common neighbours and the local-community-paradigm for topological link prediction in bipartite networks, New J. Phys., 17, (2015)
[49] Katz, L., A new status index derived from sociometric analysis, Psychometrika, 18, 39-43, (1953)
[50] Arenas, A.; Danon, L.; Díaz-Guilera, A.; Gleiser, P. M.; Guimerà, R., Community analysis in social networks, Eur. Phys. J. B, 38, 373-380, (2004)
[51] Leung, A.; Bader, G. D.; Reimand, J., HyperModules: identifying clinically and phenotypically significant network modules with disease mutations for biomarker discovery, Bioinformatics, 30, 2230-2232, (2014)
[52] Chen, J.; Zhang, L.; Liu, W.; Yan, Z., Community detection in signed networks based on discrete-time model, Chin. Phys. B, 26, 18901, (2017)
[53] Cheng, J-J; Li, L-J; Leng, M-W; Lu, W-G; Yao, Y-K; Chen, X-Y, A divisive spectral method for network community detection, J. Stat. Mech., (2016)
[54] Leng, M.; Huang, L.; Li, L.; Zhou, H.; Cheng, J.; Chen, X., Active semisupervised community detection based on asymmetric similarity measure, Int. J. Mod. Phys. B, 29, 1550078, (2015)
[55] Blondel, V. D.; Guillaume, J-L; Lambiotte, R.; Lefebvre, E., Fast unfolding of communities in large networks, J. Stat. Mech., (2008)
[56] Vihinen, M., How to evaluate performance of prediction methods? Measures and their interpretation in variation effect analysis, BMC Genom., 13, 1-10, (2012)
[57] Köhler, S.; Bauer, S.; Horn, D.; Robinson, P. N., Walking the interactome for prioritization of candidate disease genes, Am. J. Hum. Genet., 82, 949-958, (2008)
[58] Ghiassian, S. D.; Menche, J.; Barabási, A-L, A DIseAse MOdule Detection (DIAMOnD) algorithm derived from a systematic analysis of connectivity patterns of disease proteins in the human interactome, PLoS Comput. Biol., 11, e1004120, (2015)
[59] Lü, L-Y; Jin, C-H; Zhou, T., Similarity index based on local paths for link prediction of complex networks, Phys. Rev. E, 80, (2009)
[60] Zhang, L.; Hu, K.; Tang, Y., Predicting disease-related genes by topological similarity in human protein – protein interaction network, Open Phys., 8, 672-682, (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.