×

Galton-Watson processes in varying environment and accessibility percolation. (English) Zbl 1446.60059

Summary: This paper deals with branching processes in varying environment with selection, where the offspring distribution depends on the generation and every particle has a random fitness which can only increase along genealogical lineages (descendants with small fitness do not survive). We view the branching process in varying environment (BPVE) as a particular example of branching random walk. We obtain conditions for the survival or extinction of a BPVE (with or without selection), using fixed point techniques for branching random walks. These conditions rely only on the first and second moments of the offspring distributions. Our results can be interpreted in terms of accessibility percolation on Galton-Watson trees. In particular, we obtain that there is no accessibility percolation on almost every Galton-Watson tree where the expected number of offspring grows sublinearly in time, while superlinear growths allows percolation. This result is in agreement with what was found for deterministic trees in [S. Nowak and J. Krug, “Accessibility percolation on \(n\)-trees”, Europhys. Lett. 101, No. 6, Article ID 66004, 6 p. (2013; doi:10.1209/0295-5075/101/66004)].

MSC:

60J80 Branching processes (Galton-Watson, birth-and-death, etc.)
60K35 Interacting random processes; statistical mechanics type models; percolation theory
PDFBibTeX XMLCite
Full Text: DOI arXiv Euclid

References:

[1] Agresti, A. (1974). Bounds on the extinction time distribution of a branching process. Advances in Applied Probability 6, 322-335. · Zbl 0293.60077 · doi:10.2307/1426296
[2] Agresti, A. (1975). On the extinction times of varying and random environment branching processes. Journal of Applied Probability 12, 39-46. · Zbl 0306.60052 · doi:10.2307/3212405
[3] Berestycki, J., Brunet, É. and Shi, Z. (2016). The number of accessible paths in the hypercube. Bernoulli 22, 653-680. · Zbl 1341.60103 · doi:10.3150/14-BEJ641
[4] Bertacchi, D., Posta, G. and Zucca, F. (2007). Ecological equilibrium for restrained branching random walks. The Annals of Applied Probability 17, 1117-1137. · Zbl 1132.60325 · doi:10.1214/105051607000000203
[5] Bertacchi, D. and Zucca, F. (2008). Critical behaviours and critical values of branching random walks on multigraphs. Journal of Applied Probability 45, 481-497. · Zbl 1144.60057 · doi:10.1239/jap/1214950362
[6] Bertacchi, D. and Zucca, F. (2009a). Characterization of the critical values of branching random walks on weighted graphs through infinite-type branching processes. Journal of Statistical Physics 134, 53-65. · Zbl 1161.82020 · doi:10.1007/s10955-008-9653-5
[7] Bertacchi, D. and Zucca, F. (2009b). Approximating critical parameters of branching random walks. Journal of Applied Probability 46, 463-478. · Zbl 1221.60136 · doi:10.1239/jap/1245676100
[8] Bertacchi, D. and Zucca, F. (2012). Recent results on branching random walks. In Statistical Mechanics and Random Walks: Principles, Processes and Applications, 289-340. New York: Nova Science Publishers.
[9] Bertacchi, D. and Zucca, F. (2014). Strong local survival of branching random walks is not monotone. Advances in Applied Probability 46, 400-421. · Zbl 1311.60095 · doi:10.1239/aap/1401369700
[10] Bertacchi, D. and Zucca, F. (2015). Branching random walks and multi-type contact-processes on the percolation cluster of \(\mathbb{Z}^d \). The Annals of Applied Probability 25, 1993-2012. · Zbl 1319.60165 · doi:10.1214/14-AAP1040
[11] Biggins, J. D., Lubachevsky, B. D., Shwartz, A. and Weiss, A. (1991). A branching random walk with a barrier. The Annals of Applied Probability 1, 573-581. · Zbl 0749.60076 · doi:10.1214/aoap/1177005839
[12] Braunsteins, P., Decrouez, G. and Hautphenne, S. (2019). A pathwise iterative approach to the extinction of branching processes with countably many types. Stochastic Processes and Their Applications 129, 713-739. · Zbl 1409.60126 · doi:10.1016/j.spa.2018.03.013
[13] Broman, E. and Meester, R. (2008). Survival of inhomogeneous Galton-Watson processes. Advances in Applied Probability 40, 798-814. · Zbl 1159.60033 · doi:10.1239/aap/1222868186
[14] Bulinskaya, E. V. (2015a). Strong and weak convergence of population size in a supercritical catalytic branching process. Doklady Mathematics 92, 714-718. · Zbl 1336.60166 · doi:10.1134/S1064562415060228
[15] Bulinskaya, E. V. (2015b). Complete classification of catalytic branching processes. Theory of Probability and Its Applications 59, 545-566. · Zbl 1376.60074 · doi:10.1137/S0040585X97T987314
[16] Church, J. D. (1971). On infinite composition products of probability generating functions. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 19, 243-256. · Zbl 0212.50203 · doi:10.1007/BF00534112
[17] Cohn, H. and Jagers, P. (1994). General branching processes in varying environment. The Annals of Applied Probability 4, 184-193. · Zbl 0807.60078 · doi:10.1214/aoap/1177005206
[18] Coletti, C. F., Gava, R. J. and Rodriguez, P. M. (2018). On the existence of accessibility in a tree-indexed percolation model. Physica A 492, 382-388. · Zbl 1514.82098
[19] Cox, J. T. and Schinazi, R. B. (2014). A stochastic model for the evolution of the influenza virus. Markov Processes and Related Fields 20, 155-166. · Zbl 1323.92201
[20] D’Souza, J. C. and Biggins, J. D. (1992). The supercritical Galton-Watson process in varying environments. Stochastic Processes and Their Applications 42, 39-47. · Zbl 0758.60088 · doi:10.1016/0304-4149(92)90025-L
[21] Gantert, N., Müller, S., Popov, Yu, S. and Vachkovskaia, M. (2010). Survival of branching random walks in random environment. Journal of Theoretical Probability 23, 1002-1014. · Zbl 1204.60087 · doi:10.1007/s10959-009-0227-5
[22] Guiol, H., Machado, F. P. and Schinazi, R. (2011). A stochastic model of evolution. Markov Processes and Related Fields 17, 253-258. · Zbl 1325.60157
[23] Guiol, H., Machado, F. P. and Schinazi, R. (2013). On a link between a species survival time in an evolution model and the Bessel distributions. REBRAPE Revista Brasileira de Probabilidade E Estatística 27, 201-209. · Zbl 1401.60146 · doi:10.1214/11-BJPS167
[24] Harris, T. E. (1963). The Theory of Branching Processes. Berlin: Springer. · Zbl 0117.13002
[25] Hautphenne, S. (2012). Extinction probabilities of supercritical decomposable branching processes. Journal of Applied Probability 49, 639-651. · Zbl 1251.60065 · doi:10.1239/jap/1346955323
[26] Hautphenne, S., Latouche, G. and Nguyen, G. (2013). Extinction probabilities of branching processes with countably infinitely many types. Advances in Applied Probability 45, 1068-1082. · Zbl 1287.60102 · doi:10.1239/aap/1386857858
[27] Jagers, P. (1974). Galton-Watson processes in varying environments. Journal of Applied Probability 11, 174-178. · Zbl 0277.60061 · doi:10.2307/3212594
[28] Jagers, P. (1975). Branching Processes with Biological Applications. New York: Wiley. · Zbl 0356.60039
[29] Kimmel, M. and Axelrod, D. E. (2002). Branching Processes in Biology. New York: Springer. · Zbl 0994.92001
[30] Liggett, T. M. and Schinazi, R. B. (2009). A stochastic model for phylogenetic trees. Journal of Applied Probability 46, 601-607. · Zbl 1180.60079 · doi:10.1239/jap/1245676110
[31] Lindvall, T. (1974). Almost sure convergence of branching processes in varying and random environment. Annals of Probability 2, 344-346. · Zbl 0278.60057 · doi:10.1214/aop/1176996717
[32] Machado, F. P., Menshikov, M. V., Popov and Yu, S. (2001). Recurrence and transience of multitype branching random walks. Stochastic Processes and Their Applications 91, 21-37. · Zbl 1047.60086 · doi:10.1016/S0304-4149(00)00055-7
[33] Machado, F. P., Popov and Yu, S. (2003). Branching random walk in random environment on trees. Stochastic Processes and Their Applications 106, 95-106. · Zbl 1075.60570 · doi:10.1016/S0304-4149(03)00039-5
[34] Nowak, S. and Krug, J. (2013). Accessibility percolation on \(n\)-trees. Europhysics Letters 101, 66004.
[35] Pemantle, R. and Stacey, A. M. (2001). The branching random walk and contact process on Galton-Watson and nonhomogeneous trees. Annals of Probability 29, 1563-1590. · Zbl 1013.60078 · doi:10.1214/aop/1015345762
[36] Roberts, M. I. and Zhao, L. Z. (2013). Increasing paths in regular trees. Electronic Communications in Probability 18, 87. · Zbl 1306.60128 · doi:10.1214/ECP.v18-2784
[37] Schmiegelt, B. and Krug, J. (2014). Evolutionary accessibility of modular fitness landscapes. Journal of Statistical Physics 154, 334-355. · Zbl 1291.82129 · doi:10.1007/s10955-013-0868-8
[38] Zucca, F. · Zbl 1215.82026 · doi:10.1007/s10955-011-0134-x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.