×

Exponential ergodicity for a class of non-Markovian stochastic processes. (English) Zbl 1448.60128

Summary: The existence of an invariant probability measure is proven for a class of solutions of stochastic differential equations with finite delay. This is done, in this non-Markovian setting, using the cluster expansion method, from Gibbs field theory. It holds for small perturbations of ergodic diffusions.

MSC:

60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)

References:

[1] Ané, C., Blachère, S., Chafaï, D., Fougères, P., Gentil, I., Malrieu, F., Roberto, C. and Scheffer, G. (2000). Sur les Inégalités de Sobolev Logarithmiques. Société mathématique de France. · Zbl 0982.46026
[2] Arriojas, M., Hu, Y., Mohammed, S. and Pap, G. (2007). A delayed Black and Scholes formula. Stochastic Analysis and Applications 25, 471-492. · Zbl 1119.60059 · doi:10.1080/07362990601139669
[3] Bakhtin, Y. and Mattingly, J. C. (2005). Stationary solutions of stochastic differential equations with memory and stochastic partial differential equations. Communications in Contemporary Mathematics 7, 553-582. · Zbl 1098.34063 · doi:10.1142/S0219199705001878
[4] Cattiaux, P., Chafaï, D. and Guillin, A. (2012). Central limit theorems for additive functionals of ergodic Markov diffusions processes. Latin American Journal of Probability and Mathematical Statistics 9, 337-382. · Zbl 1277.60047
[5] Cattiaux, P., Dai Pra, P. and Roelly, S. (2008). A constructive approach to a class of ergodic HJB equations with unbounded and nonsmooth cost. SIAM Journal on Control and Optimization 47, 2598-2615. · Zbl 1179.47039 · doi:10.1137/070698634
[6] Cattiaux, P., Guillin, A. and Zitt, P. (2013). Poincaré inequality and hitting times. Annales de L’Institut Henri Poincaré 49, 95-118. · Zbl 1270.26018 · doi:10.1214/11-AIHP447
[7] Da Prato, G. and Zabczyk, J. (1996). Ergodicity for Infinite-Dimensional Systems. Cambridge: Cambridge University Press. · Zbl 0849.60052
[8] Dai Pra, P. and Roelly, S. (2004). An existence result for infinite-dimensional Brownian diffusions with non-regular and non-Markovian drift. Markov Processes and Related Fields 10, 113-136. · Zbl 1057.60076
[9] Dai Pra, P., Roelly, S. and Zessin, H. (2002). A Gibbs variatonal principle in space-time for infinite-dimensional diffusions. Probability Theory and Related Fields 122, 289-315. · Zbl 0998.60092 · doi:10.1007/s004400100170
[10] Ha, S.-Y., Lee, K. and Levy, D. (2009). Emergence of time-asymptotic flocking in a stochastic Cucker-Smale system. Communications in Mathematical Sciences 7, 453-469. · Zbl 1192.34067 · doi:10.4310/CMS.2009.v7.n2.a9
[11] Ignatyuk, I., Malyshev, V. and Sidoravicius, V. (1992). Convergence of the stochastic quantization method. I. Theory of Probability and Its Applications 37, 209-221. · Zbl 0787.60129
[12] Itô, K. and Nisio, M. (1964). On stationary solutions of a stochastic differential equation. Journal of Mathematics of Kyoto University 4, 1-75. · Zbl 0131.16402
[13] Ivanov, A., Kazmerchuk, Y. and Swishchuk, A. (2003). Theory, stochastic stability and applications of stochastic delay differential equations: A survey of recent results. Differential Equations and Dynamical Systems 11, 55-115. · Zbl 1231.34144
[14] Kipnis, C. and Varadhan, S. (1986). Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions. Communications in Mathematical Physics 104, 1-19. · Zbl 0588.60058 · doi:10.1007/BF01210789
[15] Kolmogorov, A. (1937). Zur Umkehrbarkeit der statistischen Naturgesetze. Mathematische Annalen 113, 766-772. · Zbl 0015.26004 · doi:10.1007/BF01571664
[16] Lipster, R. and Shiryayev, A. (1977). Statistics of Random Processes I, General Theory. Berlin: Springer. · Zbl 0364.60004
[17] Malyshev, V. and Minlos, R. (1991). Gibbs Random Fields, Cluster Expansions. Norwell: Kluwer Academic. · Zbl 0731.60099
[18] Mao, X. (2007). Stochastic Differential Equations and Applications. Woodhead Publishing. · Zbl 1138.60005
[19] Minlos, R., Roelly, S. and Zessin, H. (2000). Gibbs states on space-time. Potential Analysis 13, 367-408. · Zbl 0969.60065 · doi:10.1023/A:1026420322268
[20] Minlos, R., Verbeure, A. and Zagrebnov, V. (2000). A quantum cristal model in the light mass limit: Gibbs states. Reviews in Mathematical Physics 12, 981-1032. · Zbl 0976.82010 · doi:10.1142/S0129055X00000381
[21] Mohammed, S. E. A. (1986). Stability of linear delay equations under a small noise. Proceedings of the Edinburgh Mathematical Society 29, 233-254. · Zbl 0571.34038 · doi:10.1017/S0013091500017612
[22] Roelly, S. and Ruszel, W. (2014). Propagation of Gibbsianness for infinite-dimensional diffusions with space-time interaction. Markov Processes and Related Fields 20, 653-674. · Zbl 1317.60101
[23] Royer, G. (1999). Une Initiation aux Inégalités de Sobolev Logarithmiques. Société Mathématique de France. · Zbl 0927.60006
[24] Scheutzow, M. (1984). Qualitative behaviour of stochastic delay equations with a bounded memory. Stochastics 12, 41-80. · Zbl 0539.60061 · doi:10.1080/17442508408833294
[25] Tsimring, L.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.