Maleki, Mohsen; Hajrajabi, Arezo; Arellano-Valle, Reinaldo B. Symmetrical and asymmetrical mixture autoregressive processes. (English) Zbl 1445.62233 Braz. J. Probab. Stat. 34, No. 2, 273-290 (2020). Summary: In this paper, we study the finite mixtures of autoregressive processes assuming that the distribution of innovations (errors) belongs to the class of scale mixture of skew-normal (SMSN) distributions. The SMSN distributions allow a simultaneous modeling of the existence of outliers, heavy tails and asymmetries in the distribution of innovations. Therefore, a statistical methodology based on the SMSN family allows us to use a robust modeling on some non-linear time series with great flexibility, to accommodate skewness, heavy tails and heterogeneity simultaneously. The existence of convenient hierarchical representations of the SMSN distributions facilitates also the implementation of an ECME-type of algorithm to perform the likelihood inference in the considered model. Simulation studies and the application to a real data set are finally presented to illustrate the usefulness of the proposed model. Cited in 5 Documents MSC: 62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH) 62H30 Classification and discrimination; cluster analysis (statistical aspects) 62P20 Applications of statistics to economics Keywords:nonlinear time series; finite mixtures of autoregressive models; scale mixtures of skew-normal distributions; ECME-algorithm (expectation/conditional maximisation either) Software:sn PDFBibTeX XMLCite \textit{M. Maleki} et al., Braz. J. Probab. Stat. 34, No. 2, 273--290 (2020; Zbl 1445.62233) Full Text: DOI Euclid References: [1] Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control 19, 716-723. · Zbl 0314.62039 · doi:10.1109/TAC.1974.1100705 [2] Akinyemi, M. I. (2013). Mixture autoregressive models: Asymptotic properties and application to financial risk. PhD thesis, University of Manchester. [3] Andrews, D. F. and Mallows, C. L. (1974). Scale mixtures of normal distributions. Journal of the Royal Statistical Society, Series B 36, 99-102. · Zbl 0282.62017 · doi:10.1111/j.2517-6161.1974.tb00989.x [4] Arellano-Valle, R. B., Bolfarine, H. and Lachos, V. H. (2005). Skew-normal linear mixed models. Journal of Data Science 3, 415-438. [5] Arellano-Valle, R. B., Bolfarine, H. and Lachos, V. H. (2007). Bayesian inference for skew-normal linear mixed models. Journal of Applied Statistics 34, 663-682. · Zbl 1516.62125 [6] Arellano-Valle, R. B., Castro, L. M., Genton, M. G. and Gómez, H. W. (2008). Bayesian inference for shape mixtures of skewed distributions, with application to regression analysis. Bayesian Analysis 3, 513-539. · Zbl 1330.62242 · doi:10.1214/08-BA320 [7] Azzalini, A. (1985). A class of distributions which includes the normal ones. Scandinavian Journal of Statistics 12, 171-178. · Zbl 0581.62014 [8] Azzalini, A. and Capitanio, A. (2014). The Skew-Normal and Related Families. IMS Monographs Series. Cambridge: Cambridge University Press. · Zbl 0924.62050 · doi:10.1111/1467-9868.00194 [9] Basso, R. M., Lachos, V. H., Cabral, C. R. B. and Ghosh, P. (2010). Robust mixture modeling based on the scale mixtures of skew-normal distributions. Computational Statistics & Data Analysis 54, 2926-2941. · Zbl 1284.62193 · doi:10.1016/j.csda.2009.09.031 [10] Böhning, D. (2000). Computer-Assisted Analysis of Mixtures and Applications. Meta-Analysis, Disease Mapping and Others. Boca Raton: Chapman & Hall/CRC. · Zbl 0951.62088 [11] Böhning, D., Hennig, C., McLachlan, G. J. and McNicholas, P. D. (2014). Editorial: The 2nd special issue on advances in mixture models. Computational Statistics & Data Analysis 71, 1-2. · Zbl 1469.00037 · doi:10.1016/j.csda.2013.10.010 [12] Böhning, D., Seidel, W., Alfó, M., Garel, B., Patilea, V. and Walther, G. (2007). Editorial: Advances in mixture models. Computational Statistics & Data Analysis 51, 5205-5210. · Zbl 1445.00012 · doi:10.1016/j.csda.2006.10.025 [13] Branco, M. D. and Dey, D. K. (2001). A general class of multivariate skew-elliptical distributions. Journal of Multivariate Analysis 79, 99-113. · Zbl 0992.62047 · doi:10.1006/jmva.2000.1960 [14] Cervone, D., Pillai, N. S., Pati, D., Berbeco, R. and Lewis, J. H. (2014). A location-mixture autoregressive model for online. Forecasting of lung tumor motion. Annals of Applied Statistics 8, 1341-1371. · Zbl 1303.62058 · doi:10.1214/14-AOAS744 [15] Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B, Methodological 39, 1-22. · Zbl 0364.62022 · doi:10.1111/j.2517-6161.1977.tb01600.x [16] Frühwirth-Schnatter, S. (2006). Finite Mixture and Markov Switching Models. New York: Springer. · Zbl 1108.62002 [17] Garay, A. M., Lachos, V. H. and Abanto-Valle, C. A. (2011). Nonlinear regression models based on scale mixtures of skew-normal distributions. Journal of the Korean Statistical Society 40, 115-124. · Zbl 1296.62141 · doi:10.1016/j.jkss.2010.08.003 [18] Ghasami, S., Khodadadi, Z. and Maleki, M. (2019). Autoregressive processes with generalized hyperbolic innovations. Communications in Statistics Simulation and Computation. [19] Glasbey, C. A. (2001). Non-linear autoregressive time series with multivariate Gaussian mixtures as marginal distributions. Journal of the Royal Statistical Society Series C 50, 143-154. [20] Goldin, D. Q., Mardales, R. and Nagy, G. (2006). In search of meaning for time series subsequence clustering: Matching algorithms based on a new distance measure. In Proc. of the ACM International Conference on Information and Knowledge Management, 347-356. [21] Hajrajabi, A. and Maleki, M. (2019). Nonlinear semiparametric autoregressive model with finite mixtures of scale mixtures of skew normal innovations. Journal of Applied Statistics 46(11), 2010-2029. · Zbl 1516.62318 [22] Hoseinzadeh, A., Maleki, M., Khodadadi, Z. and Contreras-Reyes, J. E. (2018). The Skew-Reflected-Gompertz distribution for analyzing the symmetric and asymmetric data. Journal of Computational and Applied Mathematics 349, 132-141. · Zbl 1409.62045 · doi:10.1016/j.cam.2018.09.011 [23] Jin, S. and Li, W. K. (2006). Modeling panel time series with mixture autoregressive model. Journal of Data Science 4, 425-446. [24] Lanne, M. and Saikkonen, P. (2003). Modeling the U.S. short-term interest rate by mixture autoregressive processes. Journal of Financial Econometrics 1, 96-125. [25] Lau, J. and So, M. K. P. (2008). Bayesian mixture of autoregressive models. Computational Statistics & Data Analysis 53, 38-60. · Zbl 1452.62655 · doi:10.1016/j.csda.2008.06.001 [26] Lindsay, B. G. (1995). Mixture Models: Theory Geometry and Applications. NSF-CBMS Regional Conference Series in Probability and Statistics 51. Harward: Institute of Mathematical Statistics. [27] Liu, C. and Rubin, D. B. (1994). The ECME algorithm: A simple extension of EM and ECM with faster monotone convergence. Biometrika 80, 267-278. · Zbl 0812.62028 · doi:10.1093/biomet/81.4.633 [28] Liu, M. and Lin, T. I. (2014). A skew-normal mixture regression model. Educational and Psychological Measurement 74, 139-162. [29] Mahmoudi, M. R., Maleki, M. and Pak, A. (2017). Testing the difference between two independent time series models. Iranian Journal of Science and Technology, Transaction A, Science 41, 665-669. · Zbl 1392.62255 · doi:10.1007/s40995-017-0288-8 [30] Maleki, M. and Arellano-Valle, R. B. (2017). Maximum a-posteriori estimation of autoregressive processes based on finite mixtures of scale-mixtures of skew-normal distributions. Journal of Statistical Computation and Simulation 87, 1061-1083. · Zbl 07191989 [31] Maleki, M., Arellano-Valle, R. B., Dey, D. K., Mahmoudi, M. R. and Jalali, S. M. J. (2017). A Bayesian approach to robust skewed autoregressive processes. Calcutta Statistical Association Bulletin 69, 165-182. [32] Maleki, M. and Mahmoudi, M. R. (2017). Two-piece location-scale distributions based on scale mixtures of normal family. Communications in Statistics Theory and Methods 46, 12356-12369. · Zbl 1384.62068 · doi:10.1080/03610926.2017.1295160 [33] Maleki, M. and Nematollahi, A. R. (2017a). Bayesian approach to epsilon-skew-normal family. Communications in Statistics Theory and Methods 46, 7546-7561. · Zbl 1376.62016 · doi:10.1080/03610926.2016.1157186 [34] Maleki, M. and Nematollahi, A. R. (2017b). Autoregressive models with mixture of scale mixtures of Gaussian innovations. Iranian Journal of Science and Technology Transaction A, Science 41, 1099-1107. · Zbl 1392.62270 · doi:10.1007/s40995-017-0237-6 [35] Maleki, M. and Wraith, D. (2019). Mixtures of multivariate restricted skew-normal factor analyzer models in a Bayesian framework. Computational Statistics 34, 1039-1053. · Zbl 1505.62270 · doi:10.1007/s00180-019-00870-6 [36] Maleki, M., Wraith, D. and Arellano-Valle, R. B. (2018a). Robust finite mixture modeling of multivariate unrestricted skew-normal generalized hyperbolic distributions. Statistics and Computing Available at https://doi.org/10.1007/s11222-018-9815-5. · Zbl 1430.62105 · doi:10.1007/s11222-018-9815-5 [37] Maleki, M., Wraith, D. and Arellano-Valle, R. B. (2018b). A flexible class of parametric distributions for Bayesian linear mixed models. Test Available at https://doi.org/10.1007/s11749-018-0590-6. · Zbl 1420.62288 · doi:10.1007/s11749-018-0590-6 [38] McCulloch, R. E. and Tsay, R. S. (1994). Statistical inference of macroeconomic time series via Markov switching models. Journal of Time Series Analysis 15, 523-539. · Zbl 0807.62096 · doi:10.1111/j.1467-9892.1994.tb00208.x [39] McLachlan, G. J. and Krishnan, T. (2008). The eM Algorithm and Extensions. New Jersey: Wiley. · Zbl 1165.62019 [40] McLachlan, G. J. and Peel, D. (2000). Finite Mixture Models. New York: Wiley. · Zbl 0963.62061 [41] Mengersen, K., Robert, C. P. and Titterington, D. M. (2011). Mixtures: Estimation and Applications. Chichester: Wiley. · Zbl 1218.62003 [42] Moravveji, B., Khodadai, Z. and Maleki, M. (2018). A Bayesian analysis of two-piece distributions based on the scale mixtures of normal family. Iranian Journal of Science and Technology Transaction A, Science Available at https://doi.org/10.1007/s40995-018-0541-9. [43] Ni, H. and Yin, H. (2008). A self-organizing mixture autoregressive network for time series modeling and prediction. Neurocomputing 72, 3529-3537. [44] Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics 6, 461-464. · Zbl 0379.62005 · doi:10.1214/aos/1176344136 [45] Van Wijk, J. J. and Van Selow, E. R. (1999). Cluster and calendar-based visualization of time series data. In Proceedings of the IEEE Symposium on Information Visualization, 4-9. [46] Wei, G. C. G. and Tanner, M. A. (1990). A Monte Carlo implementation of the EM algorithm and the poor man’s data augmentation algorithms. Journal of the American Statistical Association 85, 699-704. [47] Wong, C. S. (1998). Statistical inference for some non-linear time series models. PhD thesis, University of Hong.Kong. Hong Kong. [48] Wong, C. S. and Chan, W. S. (2009). A Student-\(t\) mixture autoregressive model with applications to heavy tailed financial data. Biometrika 96, 751-760. · Zbl 1170.62065 · doi:10.1093/biomet/asp031 [49] Wong, C. S. and Li, W. K. (2000). On a mixture autoregressive model. Journal of the Royal Statistical Society, Series B 62, 95-115. · Zbl 0941.62095 · doi:10.1111/1467-9868.00222 [50] Wong, C. S. and Li, W. K. (2001a). On a mixture autoregressive conditional heteroscedastic model. Journal of American Statistical Association, Series B 96, 982-995. · Zbl 1051.62091 · doi:10.1198/016214501753208645 [51] Wong, C. S. and Li, W. K. (2001b). On a logistic mixture autoregressive model. Biometrika 88, 833-846. · Zbl 0985.62074 · doi:10.1093/biomet/88.3.833 [52] Wood, S., Rosen, O. and Kohn, R. (2011). Bayesian mixtures of autoregressive models. Journal of Computational and Graphical Statistics 20, 174-195. [53] Xiong, Y. and Yeung, D. (2004). Time series clustering with ARMA mixtures. Pattern Recognition 37, 1675-1689. · Zbl 1117.62488 · doi:10.1016/j.patcog.2003.12.018 [54] Zarrin, P., Maleki, M., Khodadadi, Z. and Arellano-Valle, R. B. (2018). Time series process based on the unrestricted skew normal process. Journal of Statistical Computation and Simulation 89, 38-51. · Zbl 07193712 [55] Zeller, C. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.