Estimation and asymptotic properties of a stationary univariate GARCH(\(p,q\)) process. (English. French summary) Zbl 1445.62230

Summary: In this paper, we determine the Minimum Hellinger Distance estimator of a stationary univariate GARCH process. We construct an estimator of the parameters based on the minimum Hellinger distance method. Under conditions which ensure the phi-mixing of the GARCH process, we establish the almost sure convergence and the asymptotic normality of the estimator.


62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62F12 Asymptotic properties of parametric estimators
62G35 Nonparametric robustness
60G10 Stationary stochastic processes
Full Text: Euclid


[1] Baillie T. Richard and Chung Huimin (2001). Estimation of GARCH models from the autocorrelations of the squares of a process.Journal of time series analysis vol. 22, No. 6 · Zbl 0984.62063
[2] Beran, R. (1977). Minimum Hellinger distance estimates for parametric models.Ann. Statist., 5(3), 445-463. Doi : http://dx.doi.org/10.1214/aos/1176343842. · Zbl 0381.62028
[3] Berkes, L. Horv ‘ath and P. Kokoszka (2003). GARCH processes: structure and estimation. Bernoulli, 9(2):201-227. · Zbl 1064.62094
[4] Bitty, A. L. et Hili, O. (2010). Estimateurs du minimum de distance de hellinger des processus lin´eaires ‘a longue m´emoire,Comptes Rendus Math ´ematique, 348(7-8) : 445-448. Doi : https://doi.org/10.1016/j.crma.2010.02.020 · Zbl 1184.62148
[5] Bollerslev, T. (1986) Generalized Autoregressive Conditional Heteroskedasticity.Journal of Econometrics 31, 307-327. · Zbl 0616.62119
[6] Billingsley, P. (1968)Convergence of Probability Measures.New York: Wiley. · Zbl 0172.21201
[7] Davis, R.A. and Mikosch, T. (2008). Extreme value theory for GARCH processes. In: Andersen, T.G., Davis, R.A., Kreiss, J.-P. and Mikosch, T. (Eds.): Handbook of Financial Time Series, 186-200. Springer, New York. · Zbl 1178.62094
[8] D ¨urr D., Goldstein S. (1986). Remarks on the central limit theorem for weakly dependent random variables. In: Albeverio S.A., Blanchard P., Streit L. (eds) Stochastic Processes — Mathematics and Physics. Lecture Notes in Mathematics, vol 1158. Springer, Berlin, Heidelberg. DOI https://doi.org/10.1007/BFb0080211.
[9] Engle, R.F.(1982). Autoregressive conditional heterosedasticity with estimates of the variane of United Kingdom infation,Eonometria,50,987 1008.
[10] Francq, C. and Zakoian, J.M. (2004). Maximum likelihood estimation of pure GARCH and ARMA-GARCH process.Bernoulli 10, 4, 605-637. · Zbl 1067.62094
[11] Gouri´eroux, C. and A. Monfort (1996).Simulation-Based Econometric Methods, Oxford University Press, New York.
[12] Hanyuan H., Feng Y., Steinwart I. and Johan A.K. S. (2015) Learning theory estimates with observations from general stationary stochastic processes.arXiv:1605.02887v1 [stat.ML] 10 May 2016. · Zbl 1476.68229
[13] Hili, O. (1995). On the estimation of nonlinear time series models, Stochastics and Stochastics.Reports, 52(3-4), 207-226. Doi :http://dx.doi.org /10.1080/17442509508833972. · Zbl 0852.62085
[14] N’dri, A. and Hili, O. (2011). Estimation par la distance de Hellinger des processus gaussiens stationnaires fortement d´ependants.C. R. Acad. Sci. Paris, Ser. I 349, 991-994. doi:10.1016/j.crma.2011.07.026 · Zbl 1232.62115
[15] N’dri A. and Hili O. (2013), Hellinger distance estimation of strongly dependent Multidimensional Gaussian processes.International Journal of Statistics and Probability, 2(3),70-84. Doi https://doi.org/10.5539ijsp.v2n3p70.
[16] N’drin, J.A and Hili, O. (2013). Parameter Estimation of One-Dimensional Diffusion Process by Minimum Hellinger Distance Method.Random Operators and Stochastic Equations, 21, 403-424.https://doi 10.1515/rose-2013-0019
[17] Takada, T. (2007). Robust estimtion of lent variable models with application to stochastic volativity mdels, faculty of business Oska-city University, sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan.https://doi:10.1016/j.csda.2008.06.017
[18] A. R. Kadjo, O. Hili and A. N’dri, Afrika Statistika, Vol. 15 (1), 2020, pages2225-2246.
[19] Estimation and asymptotic properties of a stationary univariate GARCH(p, q) process.2246
[20] Tinkl F. (2013).Asymptotic Theory for M-Estimators in General Autoregressive Conditional Heteroscedastic Time Series Models. Thesis, Friedrich Alexander Erlangen-Nuremberg University.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.