zbMATH — the first resource for mathematics

Open-loop optimal control of a flapping wing using an adjoint lattice Boltzmann method. (English) Zbl 1448.92034
Summary: We present the usage of an adjoint lattice Boltzmann method (LBM) for open-loop control of two-dimensional flapping wing motion. Movement of the wing is parametrised with periodic B-Splines, while the wing interacts with the surrounding flow via an immersed boundary (IB) method. Multi-objective optimisation is performed using a gradient optimisation algorithm, for which sensitivities are calculated with an adjoint method. The objectives selected were the mean lift force and mechanical power. To achieve performance suitable for optimisation, we also present an efficient GPU implementation of the LBM and adjoint LBM. The immersed boundary approach employed for the LBM is verified against results from the literature, while for the flapping case it is compared with two different finite volume method (FVM) approaches. The obtained Pareto front of optimal designs shows a clear discrepancy between the power consumption and the mean lift force. A significant improvement of the basic wing design is demonstrated, and highlights the applicability of adjoint LBM simulations in complex open-loop control problems.
92C10 Biomechanics
49J15 Existence theories for optimal control problems involving ordinary differential equations
49J20 Existence theories for optimal control problems involving partial differential equations
Full Text: DOI
[1] Żbikowski, R., On aerodynamic modelling of an insect-like flapping wing in hover for micro air vehicles, Phil. Trans. R. Soc. A, 360, 1791, 273-290 (2002)
[2] Hawkes, E. W.; Lentink, D., Fruit fly scale robots can hover longer with flapping wings than with spinning wings, J. R. Soc. Interface, 13, 123, Article 20160730 pp. (2016)
[3] Ellington, C. P., The aerodynamics of hovering insect flight. III. Kinematics, Philos. Trans. R. Soc. B, 305, 1122, 41-78 (1984)
[4] Ellington, C. P., The aerodynamics of hovering insect flight. II. Morphological parameters, Philos. Trans. R. Soc. B, 305, 1122, 17-40 (1984)
[5] Ellington, C. P., The aerodynamics of hovering insect flight. VI. Lift and power requirements, Philos. Trans. R. Soc. B, 305, 1122, 145-181 (1984)
[6] Ellington, C. P., The aerodynamics of hovering insect flight. I. The quasi-steady analysis, Philos. Trans. R. Soc. B, 305, 1122, 1-15 (1984)
[7] Ellington, C. P., The aerodynamics of hovering insect flight. IV. Aeorodynamic mechanisms, Philos. Trans. R. Soc. B, 305, 1122, 79-113 (1984)
[8] Ellington, C. P., The aerodynamics of hovering insect flight. V. A vortex theory, Philos. Trans. R. Soc. B, 305, 1122, 115-144 (1984)
[9] Shyy, W.; Aono, H.; Liu, H.; Kang, C. K., An Introduction to Flapping Wing Aerodynamics (2013), Cambridge University Press
[10] Shyy, W.; Lian, Y.; Tang, J.; Viier, D., Aerodynamics of Low Reynolds Number Flyers (2007), Cambridge University Press
[11] Dickinson, M. H.; Gotz, K. G., Unsteady aerodynamic performance of model wings at low reynolds numbers, J. Exp. Biol., 174, 1, 45-64 (1993)
[12] Liu, H.; Ellington, C. P.; Kawachi, K.; Berg, C.v.d.; Willmott, A. P., A computational fluid dynamic study of hawkmoth hovering, J. Exp. Biol., 201, 4, 461-477 (1998)
[13] Liu, H.; Kawachi, K., A numerical study of insect flight, J. Comput. Phys., 146, 1, 124-156 (1998) · Zbl 0929.76092
[14] Kramer, M., Increase in the maximum lift of an airplane wing due to a sudden increase in its effective angle of attack resulting from a gust, Z. Flugtech. Motorluftschiffahrt, 23, 7 (1932)
[15] Dickinson, M. H.; Lehmann, F.-O.; Sane, S. P., Wing rotation and the aerodynamic basis of insect flight, Science, 284, 5422, 1954-1960 (1999)
[16] Phillips, N.; Knowles, K., Effect of flapping kinematics on the mean lift of an insect-like flapping wing, ResearchGate, 225, 7, 723-736 (2011)
[17] Ramamurti, R.; Sandberg, W. C., A three-dimensional computational study of the aerodynamic mechanisms of insect flight, J. Exp. Biol., 205, 10, 1507-1518 (2002)
[18] Sun, M.; Tang, J., Lift and power requirements of hovering flight in Drosophila virilis, J. Exp. Biol., 205, 16, 2413-2427 (2002)
[19] Sun, M.; Tang, J., Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion, J. Exp. Biol., 205, 1, 55-70 (2002)
[20] Lehmann, F.-O., The mechanisms of lift enhancement in insect flight, Naturwissenschaften, 91, 3, 101-122 (2004)
[21] Liu, G.; Geier, M.; Liu, Z.; Krafczyk, M.; Chen, T., Discrete adjoint sensitivity analysis for fluid flow topology optimization based on the generalized lattice Boltzmann method, Comput. Math. Appl., 68, 10, 1374-1392 (2014) · Zbl 1367.76044
[22] Sane, S. P.; Dickinson, M. H., The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight, J. Exp. Biol., 205, 8, 1087-1096 (2002)
[23] Krause, M. J.; Heuveline, V., Parallel fluid flow control and optimisation with lattice Boltzmann methods and automatic differentiation, Comput. Fluids, 80, 28-36 (2013) · Zbl 1284.76127
[24] Tang, J.; Viieru, D.; Shyy, W., Effects of reynolds number and flapping kinematics on hovering aerodynamics, ResearchGate, 46, 4 (2008)
[25] Nakata, T.; Liu, H.; Bomphrey, R. J., A CFD-informed quasi-steady model of flapping-wing aerodynamics (2015) · Zbl 1382.76311
[26] Sane, S. P., The aerodynamics of insect flight, J. Exp. Biol., 206, 23, 4191-4208 (2003)
[27] Yan, Z.; Taha, H. E.; Hajj, M. R., Effects of aerodynamic modeling on the optimal wing kinematics for hovering MAVs, Aerosp. Sci. Technol., 45, 39-49 (2015)
[28] Chin, D. D.; Lentink, D., Flapping wing aerodynamics: from insects to vertebrates, J. Exp. Biol., 219, 7, 920-932 (2016)
[29] Weis-Fogh, T., Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production, J. Exp. Biol., 59, 1, 169-230 (1973)
[30] Maxworthy, T., Experiments on the Weis-Fogh mechanism of lift generation by insects in hovering flight. Part 1. Dynamics of the ‘fling’, ResearchGate, 93, 01, 47-63 (1979)
[31] Kolomenskiy, D.; Moffatt, H. K.; Farge, M.; Schneider, K., Two- and three-dimensional numerical simulations of the clap-fling-sweep of hovering insects, J. Fluids Struct., 27, 5, 784-791 (2011)
[32] Godoy-Diana, R.; Aider, J.-L.; Wesfreid, J. E., Transitions in the wake of a flapping foil, ResearchGate, 77, 1 Pt 2, Article 016308 pp. (2008)
[33] Mao, S.; Hamdani, H., A study on the mechanism of high-lift generation by an airfoil in unsteady motion at low reynolds number, Acta Mech. Sinica, 17, 2, 97-114 (2001)
[34] Taira, K.; Colonius, T., Three-dimensional flows around low-aspect-ratio flat-plate wings at low Reynolds numbers (2009) · Zbl 1157.76321
[35] Succi, S., The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond (2001), Oxford University Press · Zbl 0990.76001
[36] Krüger, T.; Kusumaatmaja, H.; Kuzmin, A.; Shardt, O.; Silva, G.; Viggen, E. M., (The Lattice Boltzmann Method - Principles and Practice. The Lattice Boltzmann Method - Principles and Practice, Graduate Texts in Physics (2017), Springer International Publishing: Springer International Publishing Cham) · Zbl 1362.76001
[37] Dzikowski, M.; Łaniewski-Wołłk, L.; Rokicki, J., Single component multiphase lattice Boltzmann method for Taylor/Bretherton bubble train flow simulations, Commun. Comput. Phys., 19, 04, 1042-1066 (2016) · Zbl 1373.76318
[38] Fakhari, A.; Mitchell, T.; Leonardi, C.; Bolster, D., Improved locality of the phase-field lattice-Boltzmann model for immiscible fluids at high density ratios, Phys. Rev. E, 96, 5, Article 053301 pp. (2017)
[39] Sharma, K. V.; Straka, R.; Tavares, F. W., Natural convection heat transfer modeling by the cascaded thermal lattice Boltzmann method, Int. J. Therm. Sci., 134, 552-564 (2018)
[40] Regulski, W.; Szumbarski, J.; Łaniewski-Wołłk, Łukasz; Gumowski, K.; Skibiński, J.; Wichrowski, M.; Wejrzanowski, T., Pressure drop in flow across ceramic foams-A numerical and experimental study, Chem. Eng. Sci., 137, 320-337 (2015)
[41] Pingen, G.; Evgrafov, A.; Maute, K., Topology optimization of flow domains using the lattice Boltzmann method, Struct. Multidiscip. Optim., 34, 6, 507-524 (2007) · Zbl 1273.76341
[42] Obrecht, C.; Kuznik, F.; Tourancheau, B.; Roux, J.-J., Multi-GPU implementation of the lattice Boltzmann method, Comput. Math. Appl., 65, 2, 252-261 (2013) · Zbl 1268.76048
[43] Tölke, J.; Krafczyk, M., TeraFLOP computing on a desktop PC with GPUs for 3D CFD, Int. J. Comput. Fluid Dyn., 22, 7, 443-456 (2008) · Zbl 1184.76800
[44] Falagkaris, E.; Ingram, D.; Markakis, K.; Viola, I., PROTEUS: A coupled iterative force-correction immersed-boundary cascaded lattice Boltzmann solver for moving and deformable boundary applications, Comput. Math. Appl., 75, 4, 1330-1354 (2018) · Zbl 1409.76112
[45] Lallemand, P.; Luo, L.-S., Lattice Boltzmann method for moving boundaries, J. Comput. Phys., 184, 2, 406-421 (2003) · Zbl 1062.76555
[46] Noble, D. R.; Tarczynski, J. R., A lattice-Boltzmann method for partially saturated computational cells (1998)
[47] Galindo-Torres, S. A., A coupled Discrete Element Lattice Boltzmann Method for the simulation of fluid-solid interaction with particles of general shapes, Comput. Methods Appl. Mech. Engrg., 265, 107-119 (2013) · Zbl 1286.76116
[48] Owen, D. R.J.; Leonardi, C. R.; Feng, Y. T., An efficient framework for fluid-structure interaction using the lattice Boltzmann method and immersed moving boundaries, Internat. J. Numer. Methods Engrg., 87, 1-5, 66-95 (2010) · Zbl 1242.76276
[49] Pradeep Kumar, S.; De, A.; Das, D., Investigation of flow field of clap and fling motion using immersed boundary coupled lattice Boltzmann method, J. Fluids Struct., 57, 247-263 (2015)
[50] Kimura, Y.; Suzuki, K.; Inamuro, T., Flight simulations of a two-dimensional flapping wing by the ib-lbm, Internat. J. Modern Phys. C, 25, 01, Article 1340020 pp. (2013)
[51] Gong, C. L.; Yuan, Z. J.; Zhou, Q.; Chen, G.; Fang, Z., Numerical investigation of unsteady flows past flapping wings with immersed boundary-lattice Boltzmann method, J. Mech., 34, 2, 193-207 (2018)
[52] Hino, H.; Inamuro, T., Turning flight simulations of a dragonfly-like flapping wing-body model by the immersed boundary-lattice Boltzmann method, Fluid Dyn. Res., 50, 6, Article 065501 pp. (2018)
[53] Wu, J.; Qiu, Y. L.; Shu, C.; Zhao, N.; Wang, X., An adaptive immersed boundary-lattice Boltzmann method for simulating a flapping foil in ground effect, Comput. Fluids, 106, 171-184 (2015) · Zbl 1390.76781
[54] De Rosis, A.; Falcucci, G.; Ubertini, S.; Ubertini, F., Aeroelastic study of flexible flapping wings by a coupled lattice Boltzmann-finite element approach with immersed boundary method, J. Fluids Struct., 49, 516-533 (2014)
[55] Bellman, R.; Corporation, R.; Collection, K. M.R., Dynamic Programming (1957), Princeton University Press, Rand Corporation research study
[56] Liu, D. C.; Nocedal, J., On the limited memory BFGS method for large scale optimization, Math. Program., 45, 1-3, 503-528 (1989) · Zbl 0696.90048
[57] Svanberg, K., The method of moving asymptotes-a new method for structural optimization, Internat. J. Numer. Methods Engrg., 24, 2, 359-373 (1987) · Zbl 0602.73091
[58] Jameson, A., Aerodynamic Shape Optimization using the Adjoint Method, 30 (2003), Lectures At the Von Karman Institute: Lectures At the Von Karman Institute Brussels
[59] Dwight, R. P.; Brezillon, J., Effect of approximations of the discrete adjoint on gradient-based optimization, AIAA J., 44, 12, 3022-3031 (2006)
[60] Mohammadi, B.; Pironneau, O., Applied Shape Optimization for Fluids (2009), Oxford University Press · Zbl 1179.65002
[61] Griewank, A.; Walther, A., Algorithm 799: revolve: an implementation of checkpointing for the reverse or adjoint mode of computational differentiation, ACM Trans. Math. Softw., 26, 1, 19-45 (2000) · Zbl 1137.65330
[62] Berman, G. J.; Wang, Z. J., Energy-minimizing kinematics in hovering insect flight, J. Fluid Mech., 582, 153-168 (2007) · Zbl 1115.76086
[63] Jones, M.; Yamaleev, N. K., Adjoint-based optimization of three-dimensional flapping-wing flows, AIAA J. (2014)
[64] Xu, M.; Wei, M., Using adjoint-based optimization to study kinematics and deformation of flapping wings, J. Fluid Mech., 799, 56-99 (2016)
[65] Łaniewski-Wołłk, Łukasz; Rokicki, J., Adjoint Lattice Boltzmann for topology optimization on multi-GPU architecture, J. Comput. Math. Appl., 71, 3, 833-848 (2016) · Zbl 1359.76231
[66] d’Humières, D., Multiple-relaxation-time lattice Boltzmann models in three dimensions, Phil. Trans. R. Soc. A, 360, 1792, 437-451 (2002) · Zbl 1001.76081
[67] Arumuga Perumal, D.; Dass, A. K., A Review on the development of lattice Boltzmann computation of macro fluid flows and heat transfer, Alexandria Eng. J., 54, 4, 955-971 (2015)
[68] Kupershtokh, A. L.; Medvedev, D. A.; Karpov, D. I., On equations of state in a lattice Boltzmann method, Comput. Math. Appl., 58, 5, 965-974 (2009), Mesoscopic Methods in Engineering and Science · Zbl 1189.76413
[69] Dütsch, H.; Durst, F.; Becker, S.; Lienhart, H., Low-Reynolds-number flow around an oscillating circular cylinder at low Keulegan-Carpenter numbers (1998) · Zbl 0922.76024
[70] Morison, J.; Johnson, J.; Schaaf, S., The force exerted by surface waves on piles, J. Pet. Technol., 2, 05, 149-154 (1950)
[71] Sadatoshi, T.; Hiroyuki, H., Unsteady flow past a flat plate normal to the direction of motion, J. Phys. Soc. Japan (2013)
[72] Yoshida, Y.; Nomura, T., A transient solution method for the finite element incompressible Navier-Stokes equations, Internat. J. Numer. Methods Fluids, 5, 10, 873-890 (1985) · Zbl 0619.76027
[73] Koumoutsakos, P.; Shiels, D., Simulations of the viscous flow normal to an impulsively started and uniformly accelerated flat plate, J. Fluid Mech., 328, -1, 177 (1996) · Zbl 0890.76061
[74] Tamaddon-Jahromi, H.; Townsend, P.; Webster, M., Unsteady viscous flow past a flat plate orthogonal to the flow, Comput. Fluids, 23, 2, 433-446 (1994) · Zbl 0804.76057
[75] Ellington, C.; van den Berg, C.; Willmott, S.; Thomas, A., Leading-Edge Vortices in Insect Flight (1996), ResearchGate
[76] Byrd, R. H.; Lu, P.; Nocedal, J.; Zhu, C., A limited memory algorithm for bound constrained optimization, SIAM J. Sci. Comput., 16, 5, 1190-1208 (1995) · Zbl 0836.65080
[77] Zhu, C.; Byrd, R. H.; Lu, P.; Nocedal, J., Algorithm 778: L-bfgs-b: Fortran subroutines for large-scale bound-constrained optimization, ACM Trans. Math. Software, 23, 4, 550-560 (1997) · Zbl 0912.65057
[78] ANSYS®Academic Research CFD, Release 18.1, (Help System, Theory Guide (2019), ANSYS, Inc.)
[79] OpenCFD Ltd, E. G., OpenFOAM®- official home of the open source computational fluid dynamics (CFD) toolbox (2004)
[80] Holzmann, T., Mathematics, Numerics, Derivations and OpenFOAM® (2016), Holzmann CFD
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.