Ngo, Hoang-Long; Taguchi, Dai Semi-implicit Euler-Maruyama approximation for noncolliding particle systems. (English) Zbl 1464.60083 Ann. Appl. Probab. 30, No. 2, 673-705 (2020). Summary: We introduce a semi-implicit Euler-Maruyama approximation which preserves the noncolliding property for some class of noncolliding particle systems such as Dyson-Brownian motions, Dyson-Ornstein-Uhlenbeck processes and Brownian particle systems with nearest neighbor repulsion, and study its rates of convergence in both \(L^p\)-norm and pathwise sense. Cited in 2 Documents MSC: 60K35 Interacting random processes; statistical mechanics type models; percolation theory 60H35 Computational methods for stochastic equations (aspects of stochastic analysis) Keywords:implicit Euler-Maruyama approximation; noncolliding particle systems; rate of convergence Software:RODAS PDFBibTeX XMLCite \textit{H.-L. Ngo} and \textit{D. Taguchi}, Ann. Appl. Probab. 30, No. 2, 673--705 (2020; Zbl 1464.60083) Full Text: DOI arXiv Euclid References: [1] Alfonsi, A. (2013). Strong order one convergence of a drift implicit Euler scheme: Application to the CIR process. Statist. Probab. Lett. 83 602-607. · Zbl 1273.65007 · doi:10.1016/j.spl.2012.10.034 [2] Bru, M.-F. (1989). Diffusions of perturbed principal component analysis. J. Multivariate Anal. 29 127-136. · Zbl 0687.62048 · doi:10.1016/0047-259X(89)90080-8 [3] Bru, M.-F. (1991). Wishart processes. J. Theoret. Probab. 4 725-751. · Zbl 0737.60067 · doi:10.1007/BF01259552 [4] Cépa, E. and Lépingle, D. (1997). Diffusing particles with electrostatic repulsion. Probab. Theory Related Fields 107 429-449. · Zbl 0883.60089 [5] Dereich, S., Neuenkirch, A. and Szpruch, L. (2012). An Euler-type method for the strong approximation of the Cox-Ingersoll-Ross process. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 468 1105-1115. · Zbl 1364.65013 · doi:10.1098/rspa.2011.0505 [6] Dyson, F. J. (1962). A Brownian-motion model for the eigenvalues of a random matrix. J. Math. Phys. 3 1191-1198. · Zbl 0111.32703 · doi:10.1063/1.1703862 [7] Graczyk, P. and Malecki, J. (2014). Strong solutions of non-colliding particle systems. Electron. J. Probab. 19 no. 119, 21. · Zbl 1307.60079 · doi:10.1214/EJP.v19-3842 [8] Gyöngy, I. (1998). A note on Euler’s approximations. Potential Anal. 8 205-216. · Zbl 0946.60059 [9] Hairer, E. and Wanner, G. (1991). Solving Ordinary Differential Equations. II: Stiff and Differential-Algebraic Problems. Springer Series in Computational Mathematics 14. Springer, Berlin. · Zbl 0729.65051 [10] Hefter, M. and Jentzen, A. (2019). On arbitrarily slow convergence rates for strong numerical approximations of Cox-Ingersoll-Ross processes and squared Bessel processes. Finance Stoch. 23 139-172. · Zbl 1425.91401 · doi:10.1007/s00780-018-0375-5 [11] Hutzenthaler, M., Jentzen, A. and Noll, M. (2014). Strong convergence rates and temporal regularity for Cox-Ingersoll-Ross processes and Bessel processes with accessible boundaries. Preprint. Available at arXiv:1403.6385. [12] Inukai, K. (2006). Collision or non-collision problem for interacting Brownian particles. Proc. Japan Acad. Ser. A Math. Sci. 82 66-70. · Zbl 1107.60041 · doi:10.3792/pjaa.82.66 [13] Jentzen, A., Kloeden, P. E. and Neuenkirch, A. (2009). Pathwise approximation of stochastic differential equations on domains: Higher order convergence rates without global Lipschitz coefficients. Numer. Math. 112 41-64. · Zbl 1163.65003 · doi:10.1007/s00211-008-0200-8 [14] Katori, M. and Tanemura, H. (2004). Symmetry of matrix-valued stochastic processes and noncolliding diffusion particle systems. J. Math. Phys. 45 3058-3085. · Zbl 1071.82045 · doi:10.1063/1.1765215 [15] Lépingle, D. (2010). Boundary behavior of a constrained Brownian motion between reflecting-repellent walls. Probab. Math. Statist. 30 273-287. · Zbl 1225.60060 [16] Li, X. H. and Menon, G. (2013). Numerical solution of Dyson Brownian motion and a sampling scheme for invariant matrix ensembles. J. Stat. Phys. 153 801-812. [17] Mitrinovic, D. S., Pecaric, J. E. and Fink, A. M. (1994). Inequalities Involving Functions and Their Integrals and Derivatives. Mathematics and Its Applications (East European Series) 53. Kluwer Academic, Dordrecht. [18] Neuenkirch, A. and Szpruch, L. (2014). First order strong approximations of scalar SDEs defined in a domain. Numer. Math. 128 103-136. · Zbl 1306.60075 · doi:10.1007/s00211-014-0606-4 [19] Pettersson, R. (1995). Approximations for stochastic differential equations with reflecting convex boundaries. Stochastic Process. Appl. 59 295-308. · Zbl 0841.60042 · doi:10.1016/0304-4149(95)00040-E [20] Ramanan, K. and Shkolnikov, M. (2018). Intertwinings of beta-Dyson Brownian motions of different dimensions. Ann. Inst. Henri Poincaré Probab. Stat. 54 1152-1163. · Zbl 1391.60145 · doi:10.1214/17-AIHP835 [21] Rogers, L. C. G. and Shi, Z. (1993). Interacting Brownian particles and the Wigner law. Probab. Theory Related Fields 95 555-570. · Zbl 0794.60100 · doi:10.1007/BF01196734 [22] Rost, H. and Vares, M. E. (1985). Hydrodynamics of a one-dimensional nearest neighbor model. In Particle Systems, Random Media and Large Deviations (Brunswick, Maine, 1984). Contemp. Math. 41 329-342. Amer. Math. Soc., Providence, RI. · Zbl 0572.60095 [23] Slominski, L. (1994). On approximation of solutions of multidimensional SDEs with reflecting boundary conditions. Stochastic Process. Appl. 50 197-219. · Zbl 0799.60055 · doi:10.1016/0304-4149(94)90118-X [24] Slominski, L. · Zbl 1262.60081 · doi:10.1016/j.spa.2012.10.006 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.