×

zbMATH — the first resource for mathematics

Optimal investment and consumption with labor income in incomplete markets. (English) Zbl 1447.91162
Summary: We consider the problem of optimal consumption from labor income and investment in a general incomplete semimartingale market. The economic agent cannot borrow against future income, so the total wealth is required to be positive at (all or some) previous times. Under very general conditions, we show that an optimal consumption and investment plan exists and is unique, and provide a dual characterization in terms of an optional strong supermartingale deflator and a decreasing part, which charges only the times when the no-borrowing constraint is binding. The analysis relies on the infinite-dimensional parametrization of the income/liability streams and, therefore, provides the first-order dependence of the optimal investment and consumption plans on future income/liabilities (as well as a pricing rule).
MSC:
91G10 Portfolio theory
93E20 Optimal stochastic control
91B16 Utility theory
PDF BibTeX XML Cite
Full Text: DOI Euclid
References:
[1] Bank, P. and Kauppila, H. (2017). Convex duality for stochastic singular control problems. Ann. Appl. Probab. 27 485-516. · Zbl 1360.93765
[2] Barbu, V. and Precupanu, T. (2012). Convexity and Optimization in Banach Spaces, 4th ed. Springer Monographs in Mathematics. Springer, Dordrecht. · Zbl 1244.49001
[3] Brannath, W. and Schachermayer, W. (1999). A bipolar theorem for \(L^0_+(\Omega,\mathcal{F},\mathbb{P})\). In Séminaire de Probabilités, XXXIII. Lecture Notes in Math. 1709 349-354. Springer, Berlin. · Zbl 0957.46020
[4] Campi, L. and Schachermayer, W. (2006). A super-replication theorem in Kabanov’s model of transaction costs. Finance Stoch. 10 579-596. · Zbl 1126.91024
[5] Cuchiero, C. and Teichmann, J. (2015). A convergence result for the Emery topology and a variant of the proof of the fundamental theorem of asset pricing. Finance Stoch. 19 743-761. · Zbl 1341.60018
[6] Cuoco, D. (1997). Optimal consumption and equilibrium prices with portfolio constraints and stochastic income. J. Econom. Theory 72 33-73. · Zbl 0883.90050
[7] Cvitanic, J., Schachermayer, W. and Wang, H. (2001). Utility maximization in incomplete markets with random endowment. Finance Stoch. 5 259-272. · Zbl 0993.91018
[8] Czichowsky, C. and Schachermayer, W. (2016). Strong supermartingales and limits of nonnegative martingales. Ann. Probab. 44 171-205. · Zbl 1339.60045
[9] Delbaen, F. and Schachermayer, W. (1994). A general version of the fundamental theorem of asset pricing. Math. Ann. 300 463-520. · Zbl 0865.90014
[10] Delbaen, F. and Schachermayer, W. (1997). The Banach space of workable contingent claims in arbitrage theory. Ann. Inst. Henri Poincaré Probab. Stat. 33 113-144. · Zbl 0872.90008
[11] Delbaen, F. and Schachermayer, W. (1998). The fundamental theorem of asset pricing for unbounded stochastic processes. Math. Ann. 312 215-250. · Zbl 0917.60048
[12] Dellacherie, C. and Meyer, P.-A. (1982). Probabilities and Potential. B: Theory of Martingales. North-Holland Mathematics Studies 72. North-Holland, Amsterdam. · Zbl 0494.60002
[13] Duffie, D., Fleming, W., Soner, H. M. and Zariphopoulou, T. (1997). Hedging in incomplete markets with HARA utility. J. Econom. Dynam. Control 21 753-782. · Zbl 0899.90026
[14] Duffie, D. and Zariphopoulou, T. (1993). Optimal investment with undiversifiable income risk. Math. Finance 3 135-148. · Zbl 0884.90062
[15] Ekeland, I. and Temam, R. (1976). Convex Analysis and Variational Problems. North-Holland, Amsterdam. · Zbl 0322.90046
[16] El Karoui, N. and Jeanblanc-Picque, M. (1998). Optimization of consumption with labor income. Finance Stoch. 2 409-440. · Zbl 0930.60050
[17] Föllmer, H. and Kramkov, D. (1997). Optional decompositions under constraints. Probab. Theory Related Fields 109 1-25. · Zbl 0882.60063
[18] He, H. and Pagès, H. F. (1993). Labor income, borrowing constraints, and equilibrium asset prices. Econom. Theory 3 663-696. · Zbl 0820.90028
[19] Hugonnier, J. and Kramkov, D. (2004). Optimal investment with random endowments in incomplete markets. Ann. Appl. Probab. 14 845-864. · Zbl 1086.91030
[20] Hugonnier, J., Kramkov, D. and Schachermayer, W. (2005). On utility-based pricing of contingent claims in incomplete markets. Math. Finance 15 203-212. · Zbl 1124.91338
[21] Jacod, J. and Shiryaev, A. N. (2003). Limit Theorems for Stochastic Processes, 2nd ed. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 288. Springer, Berlin. · Zbl 1018.60002
[22] Karatzas, I. (1989). Optimization problems in the theory of continuous trading. SIAM J. Control Optim. 27 1221-1259. · Zbl 0701.90008
[23] Karatzas, I. and Kardaras, C. (2007). The numéraire portfolio in semimartingale financial models. Finance Stoch. 11 447-493. · Zbl 1144.91019
[24] Karatzas, I. and Žitkovic, G. (2003). Optimal consumption from investment and random endowment in incomplete semimartingale markets. Ann. Probab. 31 1821-1858. · Zbl 1076.91017
[25] Kardaras, C. (2013). On the closure in the Emery topology of semimartingale wealth-process sets. Ann. Appl. Probab. 23 1355-1376. · Zbl 1408.91196
[26] Klein, I., Lépinette, E. and Perez-Ostafe, L. (2014). Asymptotic arbitrage with small transaction costs. Finance Stoch. 18 917-939. · Zbl 1309.60042
[27] Kramkov, D. O. (1996). Optional decomposition of supermartingales and hedging contingent claims in incomplete security markets. Probab. Theory Related Fields 105 459-479. · Zbl 0853.60041
[28] Malamud, S. and Trubowitz, E. (2007). The structure of optimal consumption streams in general incomplete markets. Math. Financ. Econ. 1 129-161. · Zbl 1204.91064
[29] Matoussi, A. and Xing, H. (2018). Convex duality for Epstein-Zin stochastic differential utility. Math. Finance 28 991-1019. · Zbl 1417.91470
[30] Mnif, M. and Pham, H. (2001). Stochastic optimization under constraints. Stochastic Process. Appl. 93 149-180. · Zbl 1070.93050
[31] Mostovyi, O. (2015). Necessary and sufficient conditions in the problem of optimal investment with intermediate consumption. Finance Stoch. 19 135-159. · Zbl 1309.91134
[32] Mostovyi, O. (2017). Optimal investment with intermediate consumption and random endowment. Math. Finance 27 96-114. · Zbl 1391.91149
[33] Protter, P. E. (2004). Stochastic Integration and Differential Equations: Stochastic Modelling and Applied Probability, 2nd ed. Applications of Mathematics (New York) 21. Springer, Berlin. · Zbl 1041.60005
[34] Rásonyi, M. (2018). On utility maximization without passing by the dual problem. Stochastics 90 955-971.
[35] Rokhlin, D. B. (2010). On the existence of an equivalent supermartingale density for a fork-convex family of random processes. Mat. Zametki 87 594-603. · Zbl 1203.60046
[36] Yu, X. (2015). Utility maximization with addictive consumption habit formation in incomplete semimartingale markets. Ann. Appl. Probab. 25 1383-1419. · Zbl 1312.91084
[37] Žitkovic, G. · Zbl 1108.91032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.