zbMATH — the first resource for mathematics

Kinetically constrained models with random constraints. (English) Zbl 1446.82057
Summary: We study two kinetically constrained models in a quenched random environment. The first model is a mixed threshold Fredrickson-Andersen model on \(\mathbb{Z}^2\), where the update threshold is either \(1\) or \(2\). The second is a mixture of the Fredrickson-Andersen \(1\)-spin facilitated constraint and the North-East constraint in \(\mathbb{Z}^2\). We compare three time scales related to these models – the bootstrap percolation time for emptying the origin, the relaxation time of the kinetically constrained model, and the time for emptying the origin of the kinetically constrained model – and understand the effect of the random environment on each of them.
82C22 Interacting particle systems in time-dependent statistical mechanics
82C43 Time-dependent percolation in statistical mechanics
60K37 Processes in random environments
60K35 Interacting random processes; statistical mechanics type models; percolation theory
Full Text: DOI Euclid
[1] Aizenman, M. and Barsky, D. J. (1987). Sharpness of the phase transition in percolation models. Comm. Math. Phys. 108 489-526. · Zbl 0618.60098
[2] Aizenman, M. and Lebowitz, J. L. (1988). Metastability effects in bootstrap percolation. J. Phys. A 21 3801-3813. · Zbl 0656.60106
[3] Antal, P. and Pisztora, A. (1996). On the chemical distance for supercritical Bernoulli percolation. Ann. Probab. 24 1036-1048. · Zbl 0871.60089
[4] Asselah, A. and Dai Pra, P. (2001). Quasi-stationary measures for conservative dynamics in the infinite lattice. Ann. Probab. 29 1733-1754. · Zbl 1018.60092
[5] Balister, P., Bollobás, B., Przykucki, M. and Smith, P. (2016). Subcritical \(\mathcal{U} \)-bootstrap percolation models have non-trivial phase transitions. Trans. Amer. Math. Soc. 368 7385-7411. · Zbl 1342.60159
[6] Balogh, J., Bollobás, B., Duminil-Copin, H. and Morris, R. (2012). The sharp threshold for bootstrap percolation in all dimensions. Trans. Amer. Math. Soc. 364 2667-2701. · Zbl 1238.60108
[7] Balogh, J. and Pittel, B. G. (2007). Bootstrap percolation on the random regular graph. Random Structures Algorithms 30 257-286. · Zbl 1106.60076
[8] Bollobás, B., Duminil-Copin, H., Morris, R. and Smith, P. (2016). Universality of two-dimensional critical cellular automata. Proc. Lond. Math. Soc. To appear.
[9] Bollobás, B., Gunderson, K., Holmgren, C., Janson, S. and Przykucki, M. (2014). Bootstrap percolation on Galton-Watson trees. Electron. J. Probab. 19 no. 13, 27. · Zbl 1290.05058
[10] Bollobás, B., Smith, P. and Uzzell, A. (2015). Monotone cellular automata in a random environment. Combin. Probab. Comput. 24 687-722. · Zbl 1371.60170
[11] Bovier, A. and den Hollander, F. (2015). Metastability: A Potential-Theoretic Approach. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 351. Springer, Cham. · Zbl 1339.60002
[12] Cancrini, N., Martinelli, F., Roberto, C. and Toninelli, C. (2008). Kinetically constrained spin models. Probab. Theory Related Fields 140 459-504. · Zbl 1139.60343
[13] Duminil-Copin, H. and Tassion, V. (2016). A new proof of the sharpness of the phase transition for Bernoulli percolation and the Ising model. Comm. Math. Phys. 343 725-745. · Zbl 1342.82026
[14] Fredrickson, G. H. and Andersen, H. C. (1984). Kinetic Ising model of the glass transition. Phys. Rev. Lett. 53 1244.
[15] Garrahan, J. P., Sollich, P. and Toninelli, C. (2011). Kinetically constrained models. Internat. Ser. Monogr. Phys. 150.
[16] Gravner, J. and Holroyd, A. E. (2019). Polluted bootstrap percolation with threshold two in all dimensions. Probab. Theory Related Fields 175 467-486. · Zbl 1422.60158
[17] Gravner, J. and McDonald, E. (1997). Bootstrap percolation in a polluted environment. J. Stat. Phys. 87 915-927. · Zbl 0919.60082
[18] Grimmett, G. (1999). Percolation, 2nd ed. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 321. Springer, Berlin. · Zbl 0926.60004
[19] Hartarsky, I. (2018). \( \mathcal{U} \)-bootstrap percolation: Critical probability, exponential decay and applications. Preprint. Available at arXiv:1806.11405. · Zbl 1409.60143
[20] Holroyd, A. E. (2003). Sharp metastability threshold for two-dimensional bootstrap percolation. Probab. Theory Related Fields 125 195-224. · Zbl 1042.60065
[21] Janson, S. (2009). On percolation in random graphs with given vertex degrees. Electron. J. Probab. 14 87-118. · Zbl 1189.60179
[22] Janson, S., Luczak, T., Turova, T. and Vallier, T. (2012). Bootstrap percolation on the random graph \(G_{n,p}\). Ann. Appl. Probab. 22 1989-2047. · Zbl 1254.05182
[23] Kordzakhia, G. and Lalley, S. P. (2006). Ergodicity and mixing properties of the northeast model. J. Appl. Probab. 43 782-792. · Zbl 1134.60060
[24] Marêché, L., Martinelli, F. and Toninelli, C. (2018). Exact asymptotics for duarte and supercritical rooted kinetically constrained models. Preprint. Available at arXiv:1807.07519. · Zbl 1451.60106
[25] Martinelli, F., Morris, R. and Toninelli, C. (2019). Universality results for kinetically constrained spin models in two dimensions. Comm. Math. Phys. 369 761-809. · Zbl 1419.82037
[26] Martinelli, F. and Toninelli, C. (2019). Towards a universality picture for the relaxation to equilibrium of kinetically constrained models. Ann. Probab. 47 324-361. · Zbl 1466.60210
[27] Ritort, F. and Sollich, P. (2003). Glassy dynamics of kinetically constrained models. Adv. Phys. 52 219-342.
[28] Schulz, M. and Donth, E. (1994). Glass transition in a modified Fredrickson model. J. Non-Cryst. Solids 168 186-194.
[29] Shapira, A. (2019). Bootstrap percolation and kinetically constrained models in homogeneous and random environments. Ph.D. thesis.
[30] Willart, J. · Zbl 0955.82006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.