×

zbMATH — the first resource for mathematics

Seismic Bayesian evidential learning: estimation and uncertainty quantification of sub-resolution reservoir properties. (English) Zbl 1439.86021
Summary: We present a framework that enables estimation of low-dimensional sub-resolution reservoir properties directly from seismic data, without requiring the solution of a high dimensional seismic inverse problem. Our workflow is based on the Bayesian evidential learning approach and exploits learning the direct relation between seismic data and reservoir properties to efficiently estimate reservoir properties. The theoretical framework we develop allows incorporation of non-linear statistical models for seismic estimation problems. Uncertainty quantification is performed with approximate Bayesian computation. With the help of a synthetic example of estimation of reservoir net-to-gross and average fluid saturations in sub-resolution thin sand reservoir, several nuances are foregrounded regarding the applicability of unsupervised and supervised learning methods for seismic estimation problems. Finally, we demonstrate the efficacy of our approach by estimating posterior uncertainty of reservoir net-to-gross in sub-resolution thin sand reservoir from an offshore delta dataset using 3D pre-stack seismic data.
MSC:
86A15 Seismology (including tsunami modeling), earthquakes
62F15 Bayesian inference
68T05 Learning and adaptive systems in artificial intelligence
86A32 Geostatistics
Software:
Adam; darch; GSLIB
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aleardi, M.; Ciabarri, F., Assessment of different approaches to rock-physics modeling: a case study from offshore Nile Delta, Geophysics, 82, 1, MR15-MR25 (2017)
[2] Aleardi, M.; Ciabarri, F.; Calabrò, R., Two-stage and single-stage seismic-petrophysical inversions applied in the Nile Delta, Lead. Edge, 37, 7, 510-518 (2018)
[3] Aleardi, M., Applying a probabilistic seismic-petrophysical inversion and two different rock-physics models for reservoir characterization in offshore Nile Delta, J. Appl. Geochem., 148, 272-286 (2018)
[4] Aki, K.; Richards, PG, Quantitative seismology (1980), Washington, D.C.: W. H. Freeman & Co, Washington, D.C.
[5] Avseth, P.; Mukerji, T.; Mavko, G., Quantitative Seismic Interpretation (2005), Cambridge: Cambridge University Press, Cambridge
[6] Beaumont, MA; Zhang, W.; Balding, DJ, Approximate Bayesian computation in population genetics, Genetics, 162, 2025-2035 (2002)
[7] Beaumont, MA, Approximate Bayesian computation in evolution and ecology, Annu. Rev. Ecol. Evol. Syst., 41, 379-406 (2010)
[8] Bengio, Y.; Courville, A.; Vincent, P., Representation learning: a review and new perspectives, IEEE Trans. Pattern Anal. Mach. Intell., 35, 1798-1828 (2013)
[9] Blum, MGB, Approximate Bayesian computation: a nonparametric perspective, J. Am. Stat. Assoc., 105, 1178-1187 (2010) · Zbl 1390.62052
[10] Blum, MGB; Saporta, G.; Lechevallier, Y., Choosing the summary statistics and the acceptance rate in approximate Bayesian computation, COMPSTAT 2010: Proceedings in Computational Statistics, 47-56 (2010), New York: Springer, New York
[11] Blum, MGB; Nunes, MA; Prangle, D.; Sisson, SA, A comparative review of dimension reduction methods in approximate Bayesian computation, Stat. Sci., 28, 2, 189-208 (2013) · Zbl 1331.62123
[12] Borg, I., Groenen, P.: Modern Multidimensional Scaling: Theory and Applications. Springer (1997) · Zbl 0862.62052
[13] Bosch, M.; Mukerji, T.; Gonzalez, EF, Seismic inversion for reservoir properties combining statistical rock physics and geostatistics: a review, Geophysics, 75, 5, A165-A176 (2010)
[14] Cunningham, P.: In: Cord, M., Cunningham, P. (eds.) Dimension reduction: Machine learning techniques for multimedia: case studies on organization and retrieval. Springer (2008)
[15] Daubechies, I.: Ten lectures on wavelets, CBMS-NSF conference series in applied mathematics, SIAM Ed (1992)
[16] Dejtrakulwong, P.: Rock physics and seismic signatures of sub-resolution sand-shale systems: Ph.D. Thesis, Stanford University, California (2012)
[17] Dejtrakulwong, P., Mukerji, T., Mavko, G.: Using kernel principal component analysis to interpret seismic signatures of thin shaly-sand reservoirs. SEG Exp. Abstr. (2012). 10.1190/segam2012-1013.1
[18] Deutsch, C.; Journel, AG, GSLIB: geostatistical software library and user’s guide (1992), London: Oxford University Press, London
[19] Donoho, DL; Johnstone, IM, Ideal spatial adaptation by wavelet shrinkage, Biometrika, 81, 425-455 (1994) · Zbl 0815.62019
[20] Donoho, D.; Johnstone, I.; Kerkyacharia, G.; Picard, D., Wavelet shrinkage: asymptopia? (with discussion), J. Roy. Statist. Soc. Ser.B, 57, 301-337 (1995)
[21] Eidsvik, J.; Mukerji, T.; Switzer, P., Estimation of geological attributes from a well log: an application of hidden Markov chains, Math. Geol., 36, 3, 379-397 (2004) · Zbl 1122.86316
[22] Fearnhead, P.; Prangle, D., Constructing summary statistics for approximate Bayesian computation: semi-automatic approximate Bayesian computation, J. R. Stat. Soc. Ser. B Stat Methodol., 74, 3, 419-474 (2012) · Zbl 1411.62057
[23] Goodfellow, I.; Bengio, Y.; Courville, A., Deep Learning (2016), Cambridge: The MIT Press, Cambridge · Zbl 1373.68009
[24] Goovaerts, P., Geostatistics for natural resources evaluation (1997), London: Oxford University Press, London
[25] Grana, D.; Mukerji, T.; Dvorkin, J.; Mavko, G., Stochastic inversion of facies from seismic data based on sequential simulations and probability perturbation method, Geophysics, 77, 4, M53-M72 (2012)
[26] Hermans, T.; Oware, E.; Caers, J., Direct prediction of spatially and temporally varying physical properties from time-lapse electrical resistance data, Water Resour. Res., 52, 9, 7262-7283 (2016)
[27] Hinton, G. E., Zemel, R. S.: Autoencoders, minimum description length, and helmholtz free energy. In: NIPS, 1993 (1994)
[28] Hinton, GE; Salakhutdinov, R., Reducing the dimensionality of data with neural networks, Science, 313, 5786, 504-507 (2006) · Zbl 1226.68083
[29] Ioffe, S.; Szegedy, C.; Bach, F.; Blei, D., Batch normalization: accelerating deep network training by reducing internal covariate shift, Proceedings of the 32nd International Conference on International Conference on Machine Learning - Volume 37(ICML’15), 448-456 (2015)
[30] Jiang, B., T.-y. Wu, C. Zheng, and W. H. Wong, 2015, Learning summary statistic for approximate Bayesian computation via deep neural network. arXiv preprint arXiv:1510.02175 · Zbl 1392.62073
[31] Kingma, D., and J. Ba, 2014, Adam: a method for stochastic optimization: arXiv preprint arXiv:1412.6980
[32] Lee, H.; Ekanadham, C.; Ng, A.; Platt, J.; Koller, D.; Singer, Y.; Roweis, SP, Sparse deep belief net model for visual area V2, Advances in Neural Information Processing Systems 20 (NIPS’07) (2008), Cambridge, MA: MIT Press, Cambridge, MA
[33] Li, L., A Bayesian approach to causal and evidential analysis for uncertainty quantification throughout the reservoir forecasting process: Ph.D. Thesis, Stanford University, California (2017)
[34] Mallat, S., A wavelet tour of signal processing (1999), San Diego: Academic Press, San Diego · Zbl 0998.94510
[35] Marion, D.; Nur, A.; Yin, H.; Han, D., Compressional velocity and porosity in sand-clay mixtures, Geophysics, 60, 1, 241-251 (1992)
[36] Mavko, G.; Mukerji, T.; Dvorkin, J., The rock physics handbook (2009), Cambridge: Cambridge University Press, Cambridge
[37] Moore, B., Principal component analysis in linear systems: controllability, observability, and model reduction, IEEE Trans. Autom. Control, 26, 1, 17-32 (1981) · Zbl 0464.93022
[38] Rousseeuw, PJ; Van Zomeren, BC, Unmasking multivariate outliers and leverage points, J. Am. Stat. Assoc., 85, 411, 633-651 (1990)
[39] Rousseeuw, PJ; Van Driessen, K., A fast algorithm for the minimum covariance determinant estimator, Technometrics, 41, 212-223 (1999)
[40] Satija, A.; Caers, J., Direct forecasting of subsurface flow response from non-linear dynamic data by linear least-squares in canonical functional principal component space, Adv. Water Resour., 77, 69-81 (2015)
[41] Satija, A.; Scheidt, C.; Li, L.; Caers, J., Direct forecasting of reservoir performance using production data without history matching, Comput. Geosci., 21, 2, 315-333 (2017) · Zbl 1387.86049
[42] Scheidt, C.; Renard, P.; Caers, J., Prediction-focused subsurface modeling: investigating the need for accuracy in flow-based inverse modeling, Math. Geosci., 47, 2, 173-191 (2014) · Zbl 1323.86013
[43] Scheidt, C.; Li, L.; Caers, J., Quantifying uncertainty in subsurface systems (2017), New Jerseys: Wiley-Blackwell, New Jerseys
[44] Schmidhuber, J., Deep learning in neural networks: an overview, Neural Netw., 61, 85-117 (2015)
[45] Scott, DW; Tapia, RA; Thompson, RA, Kernel density estimation revisited: nonlinear analysis, Theory Methods Appl., 1, 339-372 (1977) · Zbl 0363.62030
[46] Silverman, BW, Density estimation for statistics and data analysis (1986), London: Chapman & Hall, London
[47] Sisson, S. and Y. Fan, 2010, Likelihood-free Markov chain Monte Carlo: arXiv preprint arXiv:1001.2058
[48] Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R., Dropout: a simple way to prevent neural networks from overfitting, J. Mach. Learn. Res., 15, 1929-1958 (2014) · Zbl 1318.68153
[49] Tarantola, A.: Inverse problem theory and methods for model parameter estimation: SIAM (2005) · Zbl 1074.65013
[50] Vidakovic, B., Statistical modeling by wavelets, MR1681904 (1999), New York: John Wiley & Sons, New York
[51] Wegmann, D.; Leuenberger, C.; Excoffier, L., Efficient approximate Bayesian computation coupled with Markov chain Monte Carlo without likelihood, Genetics, 182, 4, 1207-1218 (2009)
[52] Walden, AT; White, RE, Seismic wavelet estimation: a frequency domain solution to a geophysical noisy input-output problem, IEEE Trans. Geosci. Remote Sens., 36, 287-297 (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.