×

zbMATH — the first resource for mathematics

The OGS-Eclipse code for simulation of coupled multiphase flow and geomechanical processes in the subsurface. (English) Zbl 1439.86002
Summary: This paper presents a numerical simulation tool for the analysis of coupled processes related to subsurface operations. The tool combines the open-source scientific code OpenGeoSys with the reservoir simulator Eclipse enabling the coupling of thermal, hydraulic, mechanical and geochemical processes. While the coupling of multiphase flow with heat and reactive geochemical component transport has been already implemented, OpenGeoSys-Eclipse is now extended for the coupling of multiphase flow and deformation. By this, OpenGeoSys-Eclipse is capable of addressing the impact of pore pressure changes on rock stability and deformation as well as the feedback effects of geomechanical processes on multiphase flow via pore volume coupling and porosity and permeability update. The coupling is verified by several test cases of gas storage scenarios and compared with reference simulations of OpenGeoSys. The results are in good agreement regarding the general effects of geomechanical feedback on pore pressure as well as porosity and permeability changes. Differences in the results are only observed for the pore volume coupling arising from the different implementation of rock compressibility models in the two simulators. The simulations are furthermore used to investigate the relevance of addressing geomechanical feedback in numerical scenario simulations for the assessment of subsurface operations. The results show clearly, that, depending on the given storage site conditions and rock types, the feedback of deformation on pore pressure can be significant and should therefore be accounted for in the assessment.
MSC:
86-08 Computational methods for problems pertaining to geophysics
86-04 Software, source code, etc. for problems pertaining to geophysics
86A05 Hydrology, hydrography, oceanography
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Afanasyev, A.; Kempka, T.; Kuehn, M.; Melnik, O., Validation of the mufits reservoir simulator against co2 storage benchmarks and history-matched models of the ketzin pilot site, Energy Procedia, 97, 395-402 (2016)
[2] Bauer, S.; Beyer, C.; Dethlefsen, F.; Dietrich, P.; Duttmann, R.; Ebert, M.; Feeser, V.; Goerke, U.; Koeber, R.; Kolditz, O.; Rabbel, W.; Schanz, T.; Schaefer, D.; Wuerdemann, H.; Dahmke, A., Impacts of the use of the geological subsurface for energy storage: an investigation concept, Environ Earth Sci, 70, 8, 3935-3943 (2013)
[3] Benisch, K.; Graupner, B.; Bauer, S., The coupled opengeosys-eclipse simulator for simulation of co2 storage - code comparison for fluid flow and geomechanical processes, Energy Procedia, 37, 3663-3671 (2013)
[4] Beyer, C.; Li, D.; Lucia, MD; Kuehn, M.; Bauer, S., Modelling co2-induced fluid-rock interactions in the altensalzwedel gas reservoir. part ii: coupled reactive transport simulation, Environ Earth Sci, 67, 2, 573-588 (2012)
[5] Biot, MA, General theory of three-dimensional consolidation, J. Appl. Phys., 12, 155-164 (1941) · JFM 67.0837.01
[6] Biot, MA; Willis, PG, The elastic coefficients of the theory of consolidation, J. Appl. Mech., 24, 594-601 (1957)
[7] Birkholzer, J.; Zhou, Q.; Tsang, C-F, Large-scale impact of co2 storage in deep saline aquifers: a sensitivity study on pressure response in stratified systems, Int. J. Greenh. Gas Control, 3, 2, 181-194 (2009)
[8] Bissel, RC; Vasco, DW; Atbi, M.; Hamdani, M.; Okwelegbe, M.; Goldwater, MH, A full field simulation of the in salah gas production and co2 storage project using a coupled geo-mechanical and thermal fluid flow simulator, Energy Procedia, 4, 3290-3297 (2011)
[9] Boettcher, N.; Taron, J.; Kolditz, O.; Park, C-H; Liedl, R., Evaluation of thermal equations of state for co2 in numerical simulations, Environ. Earth Sci., 67, 481-495 (2012)
[10] Bower, KM; Zyvoloski, G., A numerical model for thermo-hydro-mechanical coupling in fractured rock, Int. J. Rock Mech. Min. Sci., 34, 8, 1201-1211 (1997)
[11] Class, H.; Ebigbo, A.; Helmig, R.; Dahle, HK; Nordbotten, JM; Celia, M.; Audigane, P.; Darcis, M.; Ennis-King, J.; Fan, Y.; Flemisch, B.; Gasda, SE; Jin, M.; Krug, S.; Labregere, D.; Beni, AN; Pawar, RJ; Sbai, A.; Thomas, SG; Trenty, L.; Wei, L., A benchmark study on problems related to co2 storage in geologic formations, Comput. Geosci., 13, 4, 409-434 (2009) · Zbl 1190.86011
[12] De Lucia, M.; Bauer, S.; Beyer, C.; Kuehn, M.; Nowak, T.; Pudlo, D.; Reitenbach, V.; Stadler, S., Modelling co2-induced fluid-rock interactions in the altensalzwedel gas reservoir. part i: from experimental data to a reference geochemical model, Environ. Earth Sci., 67, 2, 563-572 (2012)
[13] Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., Kriemann, B., Savolainen, J., Schloemer, S., von Stechow, C., Zwickel, T., Minx, J.C. (eds.): Climate change 2014 Mitigation of climate change. contribution of working group iii to the fifth assessment report of the intergovernmental panel on climate change. Technical report, International Panel on Climate Change. Cambridge, United Kingdom (2014)
[14] European Commission. Eu energy in figures, statistical pocketbook 2015. Technical report, Public Office European Union (2015)
[15] Fjar, E., Holt, R.M., Raaen, A., Horsrud, P.: Petroleum related rock mechanics, 2 edn. Elsevier Science (2008)
[16] Flemisch, B.; Darcis, M.; Erbertseder, K.; Faigle, B.; Lauser, A.; Mosthaf, K.; Muething, S.; Nuske, A.; Tatomir, A.; Wolff, M.; Helmig, R., Dumux Dune for multi-(phase, component, scale, physics, ...) flow and transport in porous media, Adv. Water Resour., 34, 9, 1102-1112 (2011)
[17] Garitte, B., Nguyen, S., Barnichon, J.-D., Graupner, B., Lee, C., Maekawa, K., Manepally, C., Ofoegbu, G., Dasgupta, B., Fedors, R. Z., Pan, P.T., Feng, X., Rutqvist, J., Chen, F., Birkholzer, J., Wang, Q., Kolditz, O., Shao, H.: Modelling the mont terri he-d experiment for the thermal-hydraulic-mechanical response of a bedded argillaceous formation to heating. Environ. Earth Sci. 76:345- (2017)
[18] Goerke, U-J; Park, C-H; Wang, W.; Singh, AK; Kolditz, O., Numerical simulation of multiphase hydromechanical processes induced by injection into deep saline aquifers, Oil Gas Sci. Technol. Rev. IFP, 66, 105-118 (2011)
[19] Graupner, B.; Li, D.; Bauer, S., The coupled simulator ECLIPSE-OpenGeoSys for the simulation of co2 storage in saline formations, Energy Procedia, 4, 3794-3800 (2011)
[20] Gray, W.; Hassanizadeh, SM, Macroscale continuum mechanics for multiphase porous-media flow including phases, interfaces, common lines and common points, Adv. Water Resour., 21, 261-281 (1998)
[21] Hou, Z.; Goerke, U-J; Gou, Y.; Kolditz, O., Thermo-hydro-mechanical modeling of carbon dioxide injection for enhanced gas-recovery (co2-egr): a benchmarking study for code comparison, Environ. Earth Sci., 67, 549-561 (2012)
[22] Huggins, R.: Energy storage. Springer, U.S. (2010)
[23] International Energy Agency IEA. Technology Roadmap: Carbon Capture and Storage. Technical report, OECD/IEA (2009)
[24] International Energy Agency IEA. Technology Roadmap: Energy Storage. Technical report, OECD/IEA (2009)
[25] International Energy Agency IEA. World energy outlook 2015. Technical report, OECD/IEA (2015)
[26] Kempka, T.; Kuehn, M.; Class, H.; Frykmann, P.; Kopp, A.; Nielsen, CM; Probst, P., Modelling of co2 arrival time at ketzin-part i, Int. J. Greenh. Gas Control, 4, 1007-1015 (2010)
[27] Kolditz, O.; Bauer, S., A process-oriented approach to computing multi-field problems in porous media, J. Hydroinform., 6, 225-244 (2004)
[28] Kolditz, O.; Bauer, S.; Bilke, L.; Boettcher, N.; Delfs, JO; Fischer, T.; Zehner, B., Opengeosys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (thm/c) processes in porous media, Environ. Earth Sci., 67, 2, 589-599 (2012)
[29] Kolditz, O.; Bauer, S.; Boettcher, N.; Elsworth, D.; Goerke, U-J; McDermott, C-I; Park, C-H; Singh, AK; Taron, J.; Wang, W., Numerical simulation of two-phase flow in deformable porous media: application to carbon dioxide storage in the subsurface, Math. Comput. Simul., 82, 1919-1935 (2012)
[30] Kolditz, O.; Goerke, U-J; Shao, H.; Wang, W.; Bauer, S., Thermo-hydro-mechanical-chemical Processes in Fractures Porous Media: Modelling and Benchmarking, Benchmarking Initiatives (2016), Heidelberg: Springer International Publishing, Heidelberg
[31] Korsawe, J.; Starke, G.; Wang, W.; Kolditz, O., Finite element analysis of poro-elastic consolidation in porous media Standard and mixed approaches, Comput. Methods Appl. Mech. Eng., 195, 1096-1115 (2006) · Zbl 1177.76199
[32] Lewis, R.W., Schrefler, B.A.: The finite element method in the static and dynamic deformation and consolidation of porous media. Wiley. Chichester (2000) · Zbl 0935.74004
[33] Li, D.; Bauer, S.; Benisch, K.; Graupner, B.; Beyer, C., Opengeosys-chemapp a coupled simulator for reactive transport in multiphase systems - code development and application at a representative co2 storage formation in northern germany, Acta Geotech., 9, 1, 67-79 (2014)
[34] Lund, PD; Lindgren, J.; Mikkola, J.; Salpakari, J., Review of energy system flexibility measures to enable high levels of variable renewable electricity, Renew Sustain Energy Rev., 45, 785-807 (2015)
[35] Martinez, MJ; Newell, P.; Bishop, JE; Turner, DZ, Coupled multiphase flow and geomechanics model for analysis of joint reactivation during co2 sequestration operation, Int. J. Greenh. Gas Control, 17, 148-160 (2013)
[36] Mathieson, A.; Midgley, J.; Dodds, K.; Wright, I.; Ringrose, P.; Saoul, N., Co2 sequestration monitoring and verification technologies applied in krechba, algeria, Lead Edge, 29, 216-222 (2010)
[37] Mitiku, AB; Li, D.; Bauer, S.; Beyer, C., Geochemical modelling of co2 interaction with water and rock formation and assessment of its impact referring to northern Germany sedimentary basin, Appl. Geochem., 36, 168-186 (2013)
[38] Morris, J.; Hao, Y.; Foxall, W.; McNab, W., In salah co2 storage jip: Hydromechanical simulations of surface uplift due to co2 injection at in salah, Energy Procedia, 4, 3269-3275 (2011)
[39] Nagel, T.; Shao, H.; Rosskopf, C.; Linder, M.; Woerner, A.; Kolditz, O., The influence of gas-solid reaction kinetics in models of thermochemical heat storage under monotonic and cyclic loading, Appl. Energy, 136, 289-302 (2014)
[40] Olivella, S.; Gens, A.; Carrera, J.; Alonso, EE, Numerical formulation for a simulator (code-bright) for the coupled analysis of saline media, Eng. Comput., 13, 7, 87-112 (1996) · Zbl 0983.74536
[41] Onaisi, A., Samier, P., Koutsabeloulis, N.C., Longuemare, P.: Management of Stress Sensitive Reservoirs Using Two Coupled Stress-Reservoir Simulation Tools: Ecl2vis and Ath2vis. 2002. SPE-78512-MS, Presented at the Abu Dhabi Intl. Petroleum Exhibition and Conference In October 2002, Abu Dhabi
[42] Ouellet, A.; Berard, T.; Desroches, J.; Frykman, P.; Welsh, P.; Minton, J.; Pamukcu, Y.; Hurter, S.; Schmidt-Hattenberger, C., Reservoir geomechanics for assessing containment in co2 storage: a case study at ketzin, germany, Energy Procedia, 4, 3298-3305 (2011)
[43] Pfeiffer, WT; Beyer, C.; Bauer, S., Hydrogen storage in a heterogeneous sandstone formation: dimensioning and induced hydraulic effects, Petro Geosci., 23, 3, 315-236 (2017)
[44] Pfeiffer, W.T., Graupner, B., Bauer, S.: The coupled non-isothermal, multiphase-multicomponent flow and reactive transport simulator opengeosys-eclipse for porous media gas storage. Environ. Earth Sci. 75(20), 1347- (2016)
[45] Preisig, M.; Prevost, JH, Coupled multi-phase thermo-poromechanical effects case study: Co2 injection at in salah, algeria, Int. J. Greenh. Gas Control, 5, 1055-1064 (2011)
[46] Prevost, J.H.: DYNAFLOW: A Non-linear transient finite element analysis program. Department of Civil and Environmental Engineering. Princeton University, Princeton (1981)
[47] Reveillere, A.; Rohmer, J.; Manceau, JC, Hydraulic barrier design and applicability for managing the risk of co2 leakage from deep saline aquifers, Int. J. Greenh. Gas Control, 9, 62-71 (2012)
[48] Rohmer, J.; Seyedi, DM, Coupled large scale hydromechanical modelling for caprock failure risk assessment of co2 storage in deep saline aquifers, Oil Gas Sci. Techn. - Rev. IFP, 65, 3, 503-517 (2010)
[49] Rutqvist, J., Status of the tough-flac simulator and recent applications related to coupled fluid flow and crustal deformations, Comput. Geosci., 37, 6, 739-750 (2011)
[50] Rutqvist, J., The geomechanics of co2 storage in deep sedimentary formations, Geotech. Geol. Eng., 30, 3, 525-551 (2012)
[51] Rutqvist, J.; Tsang, C-F, A study of caprock hydromechanical changes associated with co2-injection into a brine formation, Environ. Geol., 42, 296-305 (2002)
[52] Rutqvist, J.; Wu, YS; Tsang, C-F; Bodvarsson, G., A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock, Int. J. Rock Mech. Min. Sci., 39, 4, 429-442 (2002)
[53] Sainz-Garcia, A.; Abarca, E.; Rubi, V.; Grandia, F., Assessment of feasible strategies for seasonal underground hydrogen storage in saline aquifers, Int. J. Hydro. Ener., 42, 16657-16666 (2017)
[54] Schaefer, F.; Walter, L.; Class, H.; Mueller, C., The regional pressure impact of co2 storage: a showcase study from the north german basin, Environ. Earth Sci., 65, 7, 2037-2049 (2012)
[55] Schlumberger, L.: Eclipse 100 technical description and user manual. Technical Report (2015)
[56] Settari, A.; Maurits, F., Coupled reservoir and geomechanical simulation system, SPE J., 3, 219-226 (1998)
[57] Settari, A., Walters, S.A.: Advances in Coupled Geomechanical and Reservoir Modeling with Applications to Reservoir Compaction. SPE-51927-MS, Presented at The 1999 SPE Reservoir Simulation Symposium in February 1999, Houston (1999)
[58] Shao, H.; Kosakowski, G.; Berner, U.; Kulik, D.; Maeder, U.; Kolditz, O., Reactive transport modeling of clogging process at maqarin natural analogue site, Phys. Chem. Earth, 64, 21-31 (2013)
[59] Steefel, CI; Appelo, CAJ; Arora, B.; Jacques, D.; Kolditz, O.; Kalbacher, T.; Lagneau, V.; Lichtner, PC; Mayer, KU; Meeussen, JCL; Molins, S.; Moulton, D.; Shao, H.; Simunek, J.; Spycher, N.; Yabusaki, SB; Yeh, GT, Reactive transport codes for subsurface environmental simulation, Comput. Geosc., 19, 3, 445-478 (2015) · Zbl 1323.86002
[60] Taron, J.; Elsworth, D.; Min, K-B, Numerical simulation of thermal-hydrologic-mechanical-chemical processes in deformable, fractured porous media, Int. J. Rock Mech. Min. Sci., 46, 842-854 (2009)
[61] Terzaghi, K.: Die berechnung der durchlaessigkeitsziffer des tones aus dem verlauf der hydrodynamischen spannungserscheinungen. Technical report, Sitz. Akad. Wissen. Wien, Math. Naturwiss. Kl., Abt. IIa 132 (1923)
[62] Tran, D., Nghiem, L., Buchanan, L.: Improved Iterative Coupling of Geomechanics with Reservoir Simulation. SPE-93244-MS, Presented at the 1SPE Reservoir Simulation Symposium Feburary 2005. The Woodlands (2005)
[63] Tran, D., Settari, A., Nghiem, L.: New iterative coupling between a reservoir simulator and a geomechanics module. Soc Petro Eng. SPE 88989 (2004)
[64] U.S. Energy Department. Ensuring safe and reliable underground natural gas storage, Final Report of the Interagency Task Force on Natural Gas Storage Safety. Technical report, Washington (2016)
[65] Vilarrasa, V.; Bolster, D.; Olivella, S.; Carrera, J., Coupled hydromechanical modeling of co2 sequestration in deep saline aquifers, Int. J. Greenh. Gas Control, 4, 910-919 (2010)
[66] Wang, B.; Bauer, S., Converting heterogeneous complex geological models to consistent finite element models: methods, development, and application to deep geothermal reservoir operation, Environ. Earth Sci., 75, 20, 1349 (2016)
[67] Wang, B.; Bauer, S., Compressed air energy storage in porous formations: a feasibility and deliverability study, Petro Geosc., 23, 3, 306-314 (2017)
[68] Wang, W.; Kolditz, O., Object-oriented finite element analysis of thermo-hydro-mechanical (thm) problems in porous media, Int. J. Numer. Methods Eng., 69, 1, 162-201 (2007) · Zbl 1176.74199
[69] Wang, W.; Rutqvist, J.; Goerke, U-J; Birkholzer, J.; Kolditz, O., Non-isothermal flow in low permeable porous media: a comparison of richards’s and two-phase flow approaches, Environ. Earth Sci., 62, 1197-1207 (2011)
[70] Watanabe, N.: Finite element method for coupled thermos-hydro-mechanical processes in discretely fractured and non-fractured porous media. Phd Thesis, Technische Universitaet Dresden (2011)
[71] Zillman, D.N., McHarg, A., Bradbrook, A., Barrera-Hernandez, L.: The law of energy underground. Understanding new developments in subsurface production, transmission, and storage. Oxford University Press, Oxford (2014)
[72] Zoback, MD, Reservoir Geomechanics (2010), Cambridge: Cambridge University Press, Cambridge
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.