zbMATH — the first resource for mathematics

Iterative geostatistical seismic inversion incorporating local anisotropies. (English) Zbl 1439.86020
Summary: Geostatistical seismic inversion methods use stochastic sequential simulation as the model generation and perturbation technique. These stochastic simulation methods use a global variogram model to express the expected spatial continuity pattern of the subsurface elastic properties of interest. The conditioning to a single variogram model is not suitable for complex and non-stationary geological environments, resulting in poor inverted models unable to reproduce non-stationary features such as channels, folds, and faults. The proposed method uses a stochastic sequential simulation and co-simulation method able to cope with spatially varying information using local and independent variogram models. The information about the dip, azimuth, and ranges of the local variogram model is inferred directly from the observed data. First, local dip and azimuth structural volumes are computed from seismic attribute analysis. Then, local variogram models are fitted along the directions estimated from the previous step. This information is used as steering data during the inversion, acting as proxy of the true subsurface geological complexities. Application examples in synthetic and real datasets with complex geometries show the impact of using local anisotropy models in both the reproduction of the original seismic data and the reliability of the inverted models. The resulting inverted models show enhanced consistency, where small-to-large scale discontinuities and complex geometries are better reproduced, allowing reducing the spatial uncertainty associated with the subsurface properties. This work represents a step forward in integrating geological consistency into geostatistical seismic inversion, surpassing the limitation of using a single variogram model to reproduce complex geological patterns.
86A15 Seismology (including tsunami modeling), earthquakes
86A22 Inverse problems in geophysics
86A32 Geostatistics
Full Text: DOI
[1] Alvarez, P.; Bolívar, F.; Di Luca, M.; Salinas, T., Multiattribute rotation scheme: a tool for reservoir property prediction from seismic inversion attributes, Interpretation, 3, 4, SAE9-SAE18 (2015)
[2] Azevedo, L.; Nunes, R.; Correia, P.; Soares, A.; Guerreiro, L.; Neto, GS, Integration of well data into geostatistical seismic amplitude variation with angle inversion for facies estimation, Geophysics, 80, 6, M113-M128 (2015)
[3] Azevedo, L., Soares, A.: Geostatistical Methods for Reservoir Geophysics. Advances in Oil and Gas Exploration & Production. Springer International Publishing (2017)
[4] Azevedo, L.; Nunes, R.; Soares, A.; Neto, GS; Martins, TS, Geostatistical seismic amplitude-versus-angle inversion, Geophys. Prospect., 66, S1, 116-131 (2018)
[5] Azevedo, L.; Grana, D.; Amaro, C., Geostatistical rock physics AVA inversion, Geophys. J. Int., 216, 3, 1728-1739 (2019)
[6] Bachrach, R., Joint estimation of porosity and saturation using stochastic rock-physics modeling, Geophysics, 71, 5, O53-O63 (2006)
[7] Biver, P.; Zaytsev, V.; Allard, D.; Wackernagel, H., Geostatistics on unstructured grids, theoretical background, and applications, Geostatistics Valencia 2016 (2017)
[8] Bornard, R., Allo, F., Coléou, T., Freudenreich, Y., Caldwell, D. H., Hamman, J. G.: Petrophysical seismic inversion to determine more accurate and precise reservoir properties: SPE Europec/EAGE Annual Conference, SPE 94144 (2005)
[9] Boisvert, JB; Manchuk, JG; Deutsch, CV, Kriging in the presence of locally varying anisotropy using non-Euclidean distances, Math. Geosci., 41, 585-601 (2009)
[10] Boisvert, JB; Deutsch, CV, Programs for kriging and sequential Gaussian simulation with locally varying anisotropy using non-Euclidean distances, Comput. Geosci., 37, 4, 495-510 (2011)
[11] Bortoli, LJ; Alabert, F.; Haas, A.; Journel, AG, Constraining stochastic images to seismic data, Geostatistics Tróia, 1, 325-337 (1992)
[12] Bosch, M., Lithologic tomography: from plural geophysical data to lithology estimation, J. Geophys. Res., 104, 749-766 (1999)
[13] Bosch, M.; Mukerji, T.; Gonzalez, E., Seismic inversion for reservoir properties combining statistical rock physics and geostatistics: a review, Geophysics, 75, 75A165-75A176 (2010)
[14] Buland, A.; Omre, H., Bayesian linearized AVO inversion, Geophysics, 68, 185-198 (2003)
[15] Caeiro, M.; Demyanov, V.; Soares, A., Optimized history matching with direct sequential image transforming for non-stationary reservoirs, Math. Geosci., 47, 975-994 (2015)
[16] Chen, Q.; Sidney, S., Seismic attribute technology for reservoir forecasting and monitoring, Lead. Edge, 16, 445-456 (1997)
[17] Chopra, S.; Marfurt, KJ, Seismic attributes – a historical perspective, Geophysics, 70, 5, 3SO-28SO (2005)
[18] Coléou, T., Allo, F., Bornard, R., Hamman, J., Caldwell, D.: Petrophysical seismic inversion, SEG, Expanded Abstracts, 1355-1358 (2005)
[19] Deutsch, C., Journel. A.G.: GSLIB: Geostatistical Software Library and Users’ Guide. Oxford University Press. Volume 136, Issue 1, pp. 83-108 (1998)
[20] Doyen, PM, Permeability, conductivity, and pore geometry of sandstone, J. Geophys. Res., 93, B7, 7729-7740 (1988)
[21] Doyen, P. M., Guidish, T. M.: Seismic discrimination of lithology: a Monte Carlo approach, in R. E. Sheriff, ed., Reservoir Geophysics: SEG, 243-250 (1992)
[22] Doyen, P. M., Den Boer, L. D.: Bayesian sequential Gaussian simulation of lithology with non-linear data: U.S. Patent 5,539,704 (1996)
[23] Doyen, P.: Seismic Reservoir Characterization: an Earth Modelling Perspective. Constraints. EAGE (2007)
[24] González, EF; Mukerji, T.; Mavko, G., Seismic inversion combining rock physics and multiple-point geostatistics, Geophysics, 73, 1, R11-R21 (2008)
[25] Grana, D., Della Rossa, E.: Probabilistic petrophysical-properties estimation integrating statistical rock physics with seismic inversion. Geophysics. 75(3), (2010). 10.1190/1.3386676
[26] Grana, D.; Fjeldstad, T.; Omre, H., Bayesian Gaussian mixture linear inversion for geophysical inverse problems, Math. Geosci., 49, 4, 493-515 (2017) · Zbl 1369.86012
[27] Gunning, J.; Glinsky, ME, Detection of reservoir quality using Bayesian seismic inversion, Geophysics, 72, 3, R37-R49 (2007)
[28] Haas, A.; Dubrule, O., Geostatistical inversion – a sequential method of stochastic reservoir modeling constrained by seismic data, First Break, 12, 561-569 (1994)
[29] Horta, A.; Caeiro, M.; Nunes, R.; Soares, A.; Atkinson, P.; Lloyd, C., Simulation of continuous variables at meander structures: application to contaminated sediments of a lagoon, GeoENV VII - Geostatistics for Environmental Applications, 161-172 (2010), London: Springer, London
[30] Iske, A., Randen, T.: Mathematical methods and modelling in hydrocarbon exploration and production. Mathematics in Industry. (2005). 10.1007/b137702 · Zbl 1054.86001
[31] Jullum, M.; Kolbjørnsen, O., A Gaussian based framework for Bayesian inversion of geophysical data to rock properties, Geophysics, 81, 3, R75-R87 (2016)
[32] Kemper, M.; Gunning, J., Joint impedance and facies inversion: seismic inversion redefined, First Break, 32, 89-95 (2014)
[33] Lillah, M.; Boisvert, JB, Inference of locally varying anisotropy fields from diverse data sources, Comput. Geosci., 82, 170-182 (2015)
[34] Marfurt, KJ, Robust estimates of 3D reflector dip and azimuth, Geophysics, 71, 4, P29-P40 (2006)
[35] Martin, R.; Machuca-Mory, D.; Leuangthong, O.; Boisvert, JB, Non-stationary geostatistical modeling: a case study comparing LVA estimation frameworks, Nat. Resour. Res., 28, 291-307 (2018)
[36] Mukerji, T.; Avseth, P.; Mavko, G.; Takahashi, I.; González, EF, Statistical rock physics: combining rock physics, information theory, and geostatistics to reduce uncertainty in seismic reservoir characterization, Lead. Edge, 20, 3, 313-319 (2001)
[37] Pereira, P.; Nunes, R.; Azevedo, L.; Soares, A., The impact of a priori elastic models into iterative geostatistical seismic inversion, J. Appl. Geophys., 170, 103850 (2019)
[38] Plavnik, A.; Sidorov, AN, Mapping the properties of geological objects with allowance for anisotropy based on the simulation of the deformation transformation, Mathematical Models and Computer Simulations, 10, 5, 629-638 (2018)
[39] Randen, T., Monsen, E., Signer, C., Abrahamsen, A., Hansen, J. O., Sæter, T., Schlaf, J., Sønneland, L.: Three-dimensional texture attributes for seismic data analysis, S.E.G. Expanded Abstracts, 19 (2000)
[40] Rimstad, K.; Omre, H., Impact of rock-physics depth trends and Markov random fields on hierarchical Bayesian lithology/fluid prediction, Geophysics, 75, 4, R93-R108 (2010)
[41] Rimstad, K.; Avseth, P.; Omre, H., Hierarchical Bayesian lithology/fluid prediction: a North Sea case study, Geophysics, 77, B69-B85 (2012)
[42] Sams, M. S., Atkins, D., Siad, N., Parwito, E., van Riel, P.: Stochastic inversion for high resolution reservoir characterization in the central Sumatra basin: Society of Petroleum Engineers, 57260 (1999)
[43] Soares, A., Direct sequential simulation and cosimulation, Math. Geol., 33, 911-926 (2001) · Zbl 1010.86017
[44] Soares, A., Diet, J. D., Guerreiro, L.: Stochastic inversion with a global perturbation method. Petroleum Geostatistics, EAGE, Cascais, Portugal (September 2007): 10-14 (2007)
[45] Spikes, K.; Mukerji, T.; Dvorkin, J.; Mavko, G., Probabilistic seismic inversion based on rock-physics models, Geophysics, 72, 5, R87-R97 (2007)
[46] Stroet, C.; Snepvangers, J., Mapping curvilinear structures with local anisotropy kriging, Math. Geol., 37, 635-649 (2005) · Zbl 1080.86511
[47] Tarantola, A.: Inverse problem theory. SIAM (2005) · Zbl 1074.65013
[48] Turco, F.; Azevedo, L.; Herold, D., Geostatistical interpolation of non-stationary seismic data, Comput. Geosci., 23, 665-682 (2019) · Zbl 1421.86030
[49] Vargas-Guzmán, JA; Vargas-Murillo, B., Functional decomposition kriging for embedding stochastic anisotropy, Geostatistics Valencia 2016 (2017)
[50] Xu, W., Conditional curvilinear stochastic simulation using pixel-based algorithms, Math. Geol., 28, 7, 937-949 (1996)
[51] Yao, T.; Calvert, C.; Jones, T.; Foreman, L.; Bishop, G., Conditioning geological models to local continuity azimuth in spectral simulation, Math. Geol., 39, 349-354 (2007)
[52] Zaytsev, V.; Biver, P.; Wackernagel, H.; Allard, D., Change-of-support models on irregular grids for geostatistical simulation, Math. Geol., l48, 4, 353-369 (2016) · Zbl 1397.86040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.