Ma, Shouhei Rational equivalence of cusps. (English) Zbl 1440.14026 Ann. \(K\)-Theory 5, No. 3, 395-410 (2020). Summary: We prove that two cusps of the same dimension in the Baily-Borel compactification of some classical series of modular varieties are linearly dependent in the rational Chow group of the compactification. This gives a higher dimensional analogue of the Manin-Drinfeld theorem. As a consequence, we obtain a higher dimensional generalization of modular units as higher Chow cycles on the modular variety. MSC: 14C15 (Equivariant) Chow groups and rings; motives 14G35 Modular and Shimura varieties 11F55 Other groups and their modular and automorphic forms (several variables) 11F46 Siegel modular groups; Siegel and Hilbert-Siegel modular and automorphic forms Keywords:modular variety; Baily-Borel compactification; cusp; Chow group; Manin-Drinfeld theorem; modular unit; higher Chow cycle PDF BibTeX XML Cite \textit{S. Ma}, Ann. \(K\)-Theory 5, No. 3, 395--410 (2020; Zbl 1440.14026) Full Text: DOI arXiv OpenURL References: [1] 10.2307/1970457 · Zbl 0154.08602 [2] 10.1090/S0002-9904-1964-11107-1 · Zbl 0232.20086 [3] 10.1016/0001-8708(86)90081-2 · Zbl 0608.14004 [4] ; Bloch, J. Algebraic Geom., 3, 537 (1994) [5] 10.1007/0-8176-4430-X_2 [6] ; Drinfeld, Funkcional. Anal. i Priložen., 7, 83 (1973) [7] ; Elkik, Séminaire sur les Pinceaux de Courbes Elliptiques (Paris, 1988). Astérisque, 183, 59 (1990) [8] 10.1007/978-3-322-90169-9 [9] 10.1515/9783110891928 [10] ; Kubert, Modular units. Grundlehren der Math. Wissenschaften, 244 (1981) · Zbl 0492.12002 [11] 10.2969/aspm/06910033 [12] 10.1007/978-1-4757-6720-9 [13] ; Manin, Izv. Akad. Nauk SSSR Ser. Mat., 36, 19 (1972) [14] 10.1007/BF01360285 · Zbl 0134.26502 [15] 10.1090/memo/0374 · Zbl 0633.14019 [16] 10.2307/1970551 · Zbl 0144.29504 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.