×

zbMATH — the first resource for mathematics

\(\beta\)-robustness approach for fuzzy multi-objective problems. (English) Zbl 1455.90157
Carvalho, Joao Paulo (ed.) et al., Information processing and management of uncertainty in knowledge-based systems. 16th international conference, IPMU 2016, Eindhoven, The Netherlands, June 20–24, 2016. Proceedings. Part II. Cham: Springer. Commun. Comput. Inf. Sci. 611, 225-237 (2016).
Summary: The paper addresses the robustness of multi-objective optimization problems with fuzzy data, expressed via triangular fuzzy numbers. To this end, we introduced a new robustness approach able to deal with fuzziness in the multi-objective context. The proposed approach is composed of two main contributions: First, new concepts of \(\beta\)-robustness are proposed to analyze fuzziness propagation to the multiple objectives. Second, an extension of our previously proposed evolutionary algorithms is suggested for integrating robustness. These proposals are illustrated on a multi-objective vehicle routing problem with fuzzy customer demands. The experimental results on different instances show the efficiency of the proposed approach.
For the entire collection see [Zbl 1385.68004].
MSC:
90C70 Fuzzy and other nonstochastic uncertainty mathematical programming
90B06 Transportation, logistics and supply chain management
90C29 Multi-objective and goal programming
90C59 Approximation methods and heuristics in mathematical programming
Software:
ParadisEO-MOEO; VRP
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bazgan, C., Aissi, H.: Min-max and min-max regret versions of combinatorial optimization problems: a survey. Eur. J. Oper. Res. 197, 427-438 (2009) · Zbl 1159.90472
[2] Barrico, C., Antunes, C.H.: Robustness analysis in multi-objective optimization using a degree of robustness concept. In: IEEE congree on CEC, pp. 6778-6783 (2006)
[3] Daniels, R.L., Carrillo, J.E.: \( \beta \)-robust scheduling for single-machine systems with uncertain processing times. IIE Trans. 29, 977-985 (1997)
[4] Dubois, D., Prade, H.: A class of fuzzy measures based on triangular norms. Int. J. General Syst. 8, 43-61 (1982) · Zbl 0473.94023
[5] Deb, K., Gupta, H.: Introducing robustness in multiple-objective optimization. Evol. Comput. 14, 463-494 (2006)
[6] Ehrgott, M., Ide, J., Schöbel, A.: Minmax robustness for multi-objective optimization problems. Eur. J. Oper. Res. 239(1), 17-31 (2014) · Zbl 1339.90296
[7] Kasperski, A., Kule, M.: Choosing robust solutions in discrete optimization problems with fuzzy costs. Fuzzy Sets Syst. 160, 667-682 (2009) · Zbl 1173.90596
[8] Liefooghe, A., Basseur, M., Jourdan, L., Talbi, E.-G.: ParadisEO-MOEO: a framework for evolutionary multi-objective optimization. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 386-400. Springer, Heidelberg (2007)
[9] Li, M., Azarm, S.: A multi-objective genetic algorithm for robust design optimization. In: 7th conference on GECCO, pp. 771-778. ACM (2005)
[10] Limbourg, P.: Multi-objective optimization of problems with epistemic uncertainty. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 413-427. Springer, Heidelberg (2005) · Zbl 1109.68620
[11] Bahri, O., Ben Amor, N., El-Ghazali, T.: New pareto approach for ranking triangular fuzzy numbers. In: Laurent, A., Strauss, O., Bouchon-Meunier, B., Yager, R.R. (eds.) IPMU 2014, Part II. CCIS, vol. 443, pp. 264-273. Springer, Heidelberg (2014) · Zbl 1418.90289
[12] Oumayma, B., Nahla, B.A., Talbi, E.-G.: Optimization algorithms for multi-objective problems with fuzzy data. In IEEE International Symposium on MCDM, pp. 194-201 (2014)
[13] Palacios, J.J., González-Rodríguez, I., Vela, C.R., Puente Peinador, J.: \( \beta \)-Robust solutions for the fuzzy open shop scheduling. In: Laurent, A., Strauss, O., Bouchon-Meunier, B., Yager, R.R. (eds.) IPMU 2014, Part I. CCIS, vol. 442, pp. 447-456. Springer, Heidelberg (2014)
[14] Pishevar, A., Tavakkoi, R.: \( \beta \)-Robust parallel machine scheduling with uncertain durations. Ind. Bus. Manage. 2(3), 69-74 (2014)
[15] Solomon, M.M.: Algorithms for the vehicle routing and scheduling problem with time window constraints. Oper. Res. 35(2), 254-265 (1987) · Zbl 0625.90047
[16] Solano-Charris, E.L., Prins, C., Santos, A.C.: Heuristic approaches for the robust vehicle routing problem. In: Fouilhoux, P., Gouveia, L.E.N., Mahjoub, A.R., Paschos, V.T. (eds.) ISCO 2014. LNCS, vol. 8596, pp. 384-395. Springer, Heidelberg (2014) · Zbl 1452.90278
[17] Talbi, E.-G.: Metaheuristics: From Design to Implementation. Wiley, Lille (2009) · Zbl 1190.90293
[18] Toth, P., Vigo, D.: The vehicle routing problem. SIAM Monogr. Discrete Math. Appl. (2002) · Zbl 0979.00026
[19] Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1, 3-28 (1978) · Zbl 0377.04002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.