×

zbMATH — the first resource for mathematics

Moments of Weil representations of finite special unitary groups. (English) Zbl 07239067
Summary: We prove an “\(n\) th moment = 1” result for irreducible Weil representations of degree \((q^n + 1) /(q + 1)\) of special unitary groups \(\text{SU}_n(q)\) for any odd \(n \geq 3\) and any prime power \(q\).
MSC:
20C15 Ordinary representations and characters
20C33 Representations of finite groups of Lie type
Software:
CHEVIE; GAP
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ennola, V., On the characters of the finite unitary groups, Ann. Acad. Sci. Fenn. A, I, 323 (1963) · Zbl 0109.26001
[2] GAP - groups, algorithms, and programming, version 4.4 (2004)
[3] Geck, M.; Hiss, G.; Lübeck, F.; Malle, G.; Pfeiffer, G., CHEVIE - a system for computing and processing generic character tables for finite groups of Lie type, Weyl groups and Hecke algebras, Appl. Algebra Engrg. Comm. Comput., 7, 175-210 (1996) · Zbl 0847.20006
[4] Gross, B. H., Rigid local systems on \(\mathbb{G}_m\) with finite monodromy, Adv. Math., 224, 2531-2543 (2010) · Zbl 1193.22001
[5] Guralnick, R. M.; Magaard, K.; Saxl, J.; Tiep, P. H., Cross characteristic representations of symplectic groups and unitary groups, J. Algebra, 257, 291-347 (2002) · Zbl 1025.20002
[6] Guralnick, R. M.; Magaard, K.; Tiep, P. H., Symmetric and alternating powers of Weil representations of finite symplectic groups, Bull. Inst. Math. Acad. Sin., 13, 443-461 (2018) · Zbl 07069218
[7] Katz, N., Rigid local systems on \(\mathbb{A}^1\) with finite monodromy, Mathematika, 64, 785-846 (2018), with an Appendix by P.H. Tiep · Zbl 1456.11232
[8] N. Katz, P.H. Tiep, Rigid local systems and finite symplectic groups, submitted for publication. · Zbl 1459.11225
[9] N. Katz, P.H. Tiep, Local systems and finite unitary and symplectic groups, in preparation. · Zbl 1425.14009
[10] Kudla, S., Seesaw dual reductive pairs, (Automorphic Forms of Several Variables, Taniguchi Symposium. Automorphic Forms of Several Variables, Taniguchi Symposium, Katata, 1983 (1983), Birkhäuser: Birkhäuser Boston), 244-268
[11] Liebeck, M. W.; O’Brien, E.; Shalev, A.; Tiep, P. H., The Ore conjecture, J. Eur. Math. Soc. (JEMS), 12, 939-1008 (2010) · Zbl 1205.20011
[12] Magaard, K.; Tiep, P. H., Irreducible tensor products of representations of quasi-simple finite groups of Lie type, (Collins, M. J.; Parshall, B. J.; Scott, L. L., Modular Representation Theory of Finite Groups (2001), Walter de Gruyter: Walter de Gruyter Berlin, etc.), 239-262 · Zbl 0992.20009
[13] Sin, P.; Tiep, P. H., Rank 3 permutation modules for finite classical groups, J. Algebra, 291, 551-606 (2005) · Zbl 1087.20013
[14] Tiep, P. H.; Zalesskii, A. E., Minimal characters of the finite classical groups, Comm. Algebra, 24, 2093-2167 (1996) · Zbl 0901.20031
[15] Tiep, P. H.; Zalesskii, A. E., Some characterizations of the Weil representations of the symplectic and unitary groups, J. Algebra, 192, 130-165 (1997) · Zbl 0877.20030
[16] Zsigmondy, K., Zur Theorie der Potenzreste, Monatsh. Math. Phys., 3, 265-284 (1892) · JFM 24.0176.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.