Lie, Victor The polynomial Carleson operator. (English) Zbl 1446.42003 Ann. Math. (2) 192, No. 1, 47-163 (2020). Summary: We prove affirmatively the one-dimensional case of a conjecture of E. M. Stein [J. Fourier Anal. Appl. Spec. Iss., 535–551 (1995; Zbl 0971.42009)] regarding the \(L^p\)-boundedness of the polynomial Carleson operator for \(1<p<\infty\).Our proof relies on two new ideas: (i) we develop a framework for higher-order wave-packet analysis that is consistent with the time-frequency analysis of the (generalized) Carleson operator, and (ii) we introduce a local analysis adapted to the concepts of mass and counting function, which yields a new tile discretization of the time-frequency plane that has the major consequence of eliminating the exceptional sets from the analysis of the Carleson operator. As a further consequence, we are able to deliver the full \(L^p\)-boundedness range and prove directly-without interpolation techniques-the strong \(L^2\) bound for the (generalized) Carleson operator, answering a question raised by C. Fefferman [Ann. Math. (2) 98, 551–571 (1973; Zbl 0268.42009)]. Cited in 1 ReviewCited in 7 Documents MSC: 42A20 Convergence and absolute convergence of Fourier and trigonometric series 42A50 Conjugate functions, conjugate series, singular integrals 35S30 Fourier integral operators applied to PDEs Keywords:time-frequency analysis; Carleson’s theorem; polynomial Carleson operator; higher-order wave-packet analysis Citations:Zbl 0971.42009; Zbl 0268.42009 PDF BibTeX XML Cite \textit{V. Lie}, Ann. Math. (2) 192, No. 1, 47--163 (2020; Zbl 1446.42003) Full Text: DOI arXiv OpenURL References: [1] Grafakos, Loukas; Li, Xiaochun, Uniform bounds for the bilinear {H}ilbert transforms. {I}, Ann. of Math. (2). Annals of Mathematics. Second Series, 159, 889-933 (2004) · Zbl 1071.44004 [2] Stein, Elias M., Harmonic {A}nalysis: {R}eal-{V}ariable {M}ethods, {O}rthogonality, and {O}scillatory {I}ntegrals, Princeton {M}athematical {S}eries, 43, xiv+695 pp. (1993) · Zbl 0821.42001 [3] Alp{\'{a}}r, L{\'{a}}szl{\'{o}}, Sur certaines transform{\'{e}}es des s{\'{e}}ries de puissance absolument convergentes sur la fronti{\`e}re de leur cercle de convergence, Magyar Tud. Akad. Mat. Kutat\'{o} Int. K\"{o}zl.. A Magyar Tudom\'{a}nyos Akad\'{e}mia. Matematikai Kutat\'{o} Int\'{e}zet\'{e}nek K\"{o}zlem\'{e}nyei, 7, 287-316 (1962) · Zbl 0115.28601 [4] Antonov, N. Yu., Convergence of {F}ourier series. Proceedings of the {XX} {W}orkshop on {F}unction {T}heory ({M}oscow, 1995), East J. Approx., 2, 187-196 (1996) · Zbl 0919.42004 [5] {Arias-de-Reyna}, J., Pointwise convergence of {F}ourier series, J. London Math. Soc. (2). Journal of the London Mathematical Society. Second Series, 65, 139-153 (2002) · Zbl 1017.42002 [6] Austin, Tim, On the norm convergence of non-conventional ergodic averages, Ergodic Theory Dynam. Systems. Ergodic Theory and Dynamical Systems, 30, 321-338 (2010) · Zbl 1206.37003 [7] Bateman, Michael, Single annulus {\(L^p\)} estimates for {H}ilbert transforms along vector fields, Rev. Mat. Iberoam.. Revista Matem\'{a}tica Iberoamericana, 29, 1021-1069 (2013) · Zbl 1283.42019 [8] Bateman, Michael; Thiele, Christoph, {\(L^p\)} estimates for the {H}ilbert transforms along a one-variable vector field, Anal. PDE. Analysis & PDE, 6, 1577-1600 (2013) · Zbl 1285.42014 [9] Benea, Cristina; Muscalu, Camil, Multiple vector-valued inequalities via the helicoidal method, Anal. PDE. Analysis & PDE, 9, 1931-1988 (2016) · Zbl 1361.42005 [10] Benea, Cristina; Muscalu, Camil, Quasi-{B}anach valued inequalities via the helicoidal method, J. Funct. Anal.. Journal of Functional Analysis, 273, 1295-1353 (2017) · Zbl 1392.42024 [11] Benea, Cristina; Muscalu, Camil, Sparse domination via the helicoidal method · Zbl 1361.42005 [12] Birkhoff, G. D., Proof of the ergodic theorem, Proc. Nat. Acad. Sci. U.S.A., 17, 656-660 (1931) · JFM 57.1011.02 [13] Bourgain, Jean, Temps de retour pour les syst\`emes dynamiques (Return times of dynamical systems), C. R. Acad. Sci. Paris S\'{e}r. I Math.. Comptes Rendus des S\'{e}ances de l’Acad\'{e}mie des Sciences. S\'{e}rie I. Math\'{e}matique, 306, 483-485 (1988) · Zbl 0655.58022 [14] Bourgain, Jean, A remark on the maximal function associated to an analytic vector field. Analysis at {U}rbana, {V}ol. {I}, London Math. Soc. Lecture Note Ser., 137, 111-132 (1989) [15] Bourgain, Jean, Double recurrence and almost sure convergence, J. Reine Angew. Math.. Journal f\"{u}r die Reine und Angewandte Mathematik. [Crelle’s Journal], 404, 140-161 (1990) · Zbl 0685.28008 [16] Calder\'{o}n, A.-P., Cauchy integrals on {L}ipschitz curves and related operators, Proc. Nat. Acad. Sci. U.S.A.. Proceedings of the National Academy of Sciences of the United States of America, 74, 1324-1327 (1977) · Zbl 0373.44003 [17] Carleson, Lennart, On convergence and growth of partial sums of {F}ourier series, Acta Math.. Acta Mathematica, 116, 135-157 (1966) · Zbl 0144.06402 [18] Chen, Y. M., An almost everywhere divergent {F}ourier series of the class {\(L(\log\sp{+}\log\sp{+}L) \sp{1-\varepsilon } \)}, J. London Math. Soc.. The Journal of the London Mathematical Society, 44, 643-654 (1969) · Zbl 0169.39703 [19] Christ, Michael, Hilbert transforms along curves. {I}. {N}ilpotent groups, Ann. of Math. (2). Annals of Mathematics. Second Series, 122, 575-596 (1985) · Zbl 0593.43011 [20] Christ, Michael; Nagel, Alexander; Stein, Elias M.; Wainger, Stephen, Singular and maximal {R}adon transforms: analysis and geometry, Ann. of Math. (2). Annals of Mathematics. Second Series, 150, 489-577 (1999) · Zbl 0960.44001 [21] Culiuc, Amalia; Di Plinio, Francesco; Ou, Yumeng, Domination of multilinear singular integrals by positive sparse forms, J. Lond. Math. Soc. (2). Journal of the London Mathematical Society. Second Series, 98, 369-392 (2018) · Zbl 1402.42013 [22] Conze, Jean-Pierre; Lesigne, Emmanuel, Th\'{e}or\`emes ergodiques pour des mesures diagonales, Bull. Soc. Math. France. Bulletin de la Soci\'{e}t\'{e} Math\'{e}matique de France, 112, 143-175 (1984) · Zbl 0595.28018 [23] Demeter, Ciprian, Pointwise convergence of the ergodic bilinear {H}ilbert transform, Illinois J. Math.. Illinois Journal of Mathematics, 51, 1123-1158 (2007) · Zbl 1175.37013 [24] Demeter, Ciprian, Divergence of combinatorial averages and the unboundedness of the trilinear {H}ilbert transform, Ergodic Theory Dynam. Systems. Ergodic Theory and Dynamical Systems, 28, 1453-1464 (2008) · Zbl 1168.42007 [25] Demeter, Ciprian; Lacey, Michael T.; Tao, Terence; Thiele, Christoph, Breaking the duality in the return times theorem, Duke Math. J.. Duke Mathematical Journal, 143, 281-355 (2008) · Zbl 1213.42064 [26] Demeter, Ciprian; Tao, Terence; Thiele, Christoph, Maximal multilinear operators, Trans. Amer. Math. Soc.. Transactions of the Amer. Math. Soc., 360, 4989-5042 (2008) · Zbl 1268.42034 [27] Demeter, Ciprian; Thiele, Christoph, On the two-dimensional bilinear {H}ilbert transform, Amer. J. Math.. American Journal of Mathematics, 132, 201-256 (2010) · Zbl 1206.42010 [28] Di Plinio, Francesco, Lacunary {F}ourier and {W}alsh-{F}ourier series near {\(L^1\)}, Collect. Math.. Collectanea Mathematica, 65, 219-232 (2014) · Zbl 1311.42008 [29] Di Plinio, Francesco; Do, Yen Q.; Uraltsev, Gennady N., Positive sparse domination of variational {C}arleson operators, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5). Annali della Scuola Normale Superiore di Pisa. Classe di Scienze. Serie V, 18, 1443-1458 (2018) · Zbl 1403.42010 [30] Di Plinio, Francesco; Guo, Shaoming; Thiele, Christoph; Zorin-Kranich, Pavel, Square functions for bi-{L}ipschitz maps and directional operators, J. Funct. Anal.. Journal of Functional Analysis, 275, 2015-2058 (2018) · Zbl 1400.42023 [31] Do, Yen; Lacey, Michael T., On the convergence of lacunacy {W}alsh-{F}ourier series, Bull. Lond. Math. Soc.. Bulletin of the London Mathematical Society, 44, 241-254 (2012) · Zbl 1241.42005 [32] Lejeune Dirichlet, G., Sur la convergence des s{\'{e}}ries trigonom{\'{e}}triques qui servent \`a repr{\'{e}}senter une fonction arbitraire entre des limites donn\'{e}es, J. Reine Angew. Math.. Journal f\"{u}r die Reine und Angewandte Mathematik. [Crelle’s Journal], 4, 157-169 (1829) · ERAM 004.0148cj [33] Do, Yen; Thiele, Christoph, {\(L^p\)} theory for outer measures and two themes of {L}ennart {C}arleson united, Bull. Amer. Math. Soc. (N.S.). Amer. Math. Soc.. Bulletin. New Series, 52, 249-296 (2015) · Zbl 1318.42016 [34] Do, Yen; Oberlin, Richard; Palsson, Eyvindur A., Variation-norm and fluctuation estimates for ergodic bilinear averages, Indiana Univ. Math. J.. Indiana University Mathematics Journal, 66, 55-99 (2017) · Zbl 1368.42005 [35] {du Bois-Reymond}, Paul, Untersuchungen {\"{u}}ber die {C}onvergenz und {D}ivergenz der {F}ourierschen {D}arstellungsformeln., Abhandlungen der Bayerischen Akademie der Wissenschaften. M{\"{u}}nch. Abh., 12, 1-102 (1876) · JFM 09.0175.02 [36] Durcik, Polona; Kova{\v{c}}, Vjekoslav; {\v{S}}kreb, Kristina Ana; Thiele, Christoph, Norm variation of ergodic averages with respect to two commuting transformations, Ergodic Theory Dynam. Systems. Ergodic Theory and Dynamical Systems, 39, 658-688 (2019) · Zbl 1416.37007 [37] Fabes, Eugene B.; Rivi{\`e}re, N. M., Singular integrals with mixed homogeneity, Studia Math.. Polska Akademia Nauk. Instytut Matematyczny. Studia Mathematica, 27, 19-38 (1966) · Zbl 0161.32403 [38] Fabes, Eugene B., Singular integrals and partial differential equations of parabolic type, Studia Math.. Polska Akademia Nauk. Instytut Matematyczny. Studia Mathematica, 28, 81-131 (1966/67) · Zbl 0144.35002 [39] Fefferman, Charles, Pointwise convergence of {F}ourier series, Ann. of Math. (2). Annals of Mathematics. Second Series, 98, 551-571 (1973) · Zbl 0268.42009 [40] Fefferman, Charles L., The uncertainty principle, Bull. Amer. Math. Soc. (N.S.). Amer. Math. Soc.. Bulletin. New Series, 9, 129-206 (1983) · Zbl 0526.35080 [41] Fourier, Joseph, Th\'{e}orie Analytique de la Chaleur, xxii+644 pp. (1988) [42] Fre\u{\i}man, G. A., Foundations of a Structural Theory of Set Addition. (in Russian), 140 pp. (1966) [43] Fre\u{\i}man, G. A., Foundations of a Structural Theory of Set Addition, Trans. Math. Monogr., 37, vii+108 pp. (1973) [44] Furstenberg, Harry, Ergodic behavior of diagonal measures and a theorem of {S}zemer\'{e}di on arithmetic progressions, J. Analyse Math.. Journal d’Analyse Math\'{e}matique, 31, 204-256 (1977) · Zbl 0347.28016 [45] Geller, D.; Stein, E. M., Estimates for singular convolution operators on the {H}eisenberg group, Math. Ann.. Mathematische Annalen, 267, 1-15 (1984) · Zbl 0537.43005 [46] Green, Ben; Tao, Terence, An inverse theorem for the {G}owers {\(U^3(G)\)} norm, Proc. Edinb. Math. Soc. (2). Proceedings of the Edinburgh Mathematical Society. Series II, 51, 73-153 (2008) · Zbl 1202.11013 [47] Green, Ben; Tao, Terence; Ziegler, Tamar, An inverse theorem for the {G}owers {\(U^{s+1}[N]\)}-norm, Ann. of Math. (2). Annals of Mathematics. Second Series, 176, 1231-1372 (2012) · Zbl 1282.11007 [48] Gowers, W. T., A new proof of {S}zemer\'{e}di’s theorem for arithmetic progressions of length four, Geom. Funct. Anal.. Geometric and Functional Analysis, 8, 529-551 (1998) · Zbl 0907.11005 [49] Gowers, W. T., A new proof of {S}zemer\'{e}di’s theorem, Geom. Funct. Anal.. Geometric and Functional Analysis, 11, 465-588 (2001) · Zbl 1028.11005 [50] Grafakos, Loukas; Tao, Terence; Terwilleger, Erin, {\(L^p\)} bounds for a maximal dyadic sum operator, Math. Z.. Mathematische Zeitschrift, 246, 321-337 (2004) · Zbl 1076.42013 [51] Grafakos, Loukas; Martell, Jos\'{e} Mar\'{\i}a; Soria, Fernando, Weighted norm inequalities for maximally modulated singular integral operators, Math. Ann.. Mathematische Annalen, 331, 359-394 (2005) · Zbl 1133.42019 [52] Greenleaf, Allan; Uhlmann, Gunther, Estimates for singular {R}adon transforms and pseudodifferential operators with singular symbols, J. Funct. Anal.. Journal of Functional Analysis, 89, 202-232 (1990) · Zbl 0717.44001 [53] Guo, Shaoming, Hilbert transform along measurable vector fields constant on {L}ipschitz curves: {\(L^2\)} boundedness, Anal. PDE. Analysis & PDE, 8, 1263-1288 (2015) · Zbl 1323.42013 [54] Guo, Shaoming, Hilbert transform along measurable vector fields constant on {L}ipschitz curves: {\(L^p\)} boundedness, Trans. Amer. Math. Soc.. Transactions of the Amer. Math. Soc., 369, 2493-2519 (2017) · Zbl 1356.42007 [55] Guo, Shaoming; Hickman, Jonathan; Lie, Victor; Roos, Joris, Maximal operators and {H}ilbert transforms along variable non-flat homogeneous curves, Proc. Lond. Math. Soc. (3). Proceedings of the London Mathematical Society. Third Series, 115, 177-219 (2017) · Zbl 1388.42039 [56] Hal{\'{a}}sz, G., On a theorem of {L}. {A}lp{\'{a}}r concerning {F}ourier series of powers of certain functions, Studia Sci. Math. Hungar.. Studia Scientiarum Mathematicarum Hungarica. A Quarterly of the Hungarian Academy of Sciences, 2, 67-72 (1967) · Zbl 0214.32001 [57] Host, Bernard; Kra, Bryna, Nonconventional ergodic averages and nilmanifolds, Ann. of Math. (2). Annals of Mathematics. Second Series, 161, 397-488 (2005) · Zbl 1077.37002 [58] Hunt, Richard A., On the convergence of {F}ourier series. Orthogonal {E}xpansions and their {C}ontinuous {A}nalogues ({P}roc. {C}onf., {E}dwardsville, {I}ll., 1967), 235-255 (1968) [59] Jones, Jr., B. Frank, A class of singular integrals, Amer. J. Math.. American Journal of Mathematics, 86, 441-462 (1964) · Zbl 0123.08501 [60] Karagulyan, G. A., On unboundedness of maximal operators for directional {H}ilbert transforms, Proc. Amer. Math. Soc.. Proceedings of the Amer. Math. Soc., 135, 3133-3141 (2007) · Zbl 1162.42009 [61] Katznelson, Yitzhak, An introduction to harmonic analysis, Cambridge Mathematical Library, xviii+314 pp. (2004) · Zbl 1055.43001 [62] Kaufman, R., Uniform convergence of {F}ourier series in harmonic analysis, Studia Sci. Math. Hungar.. Studia Scientiarum Mathematicarum Hungarica. A Quarterly of the Hungarian Academy of Sciences, 10, 81-83 (1975) · Zbl 0354.42004 [63] Kolmogorov, A. N., Une serie de {F}ourier-{L}ebesgue divergente presque partout, Fund. Math., 4, 324-328 (1923) · JFM 49.0205.02 [64] Kolmogorov, A. N., Une serie de {F}ourier-{L}ebesgue divergente partout, C. R. Acad. Sci. Paris, 183, 1327-1329 (1926) · JFM 52.0269.02 [65] Konyagin, Sergei V., On the divergence everywhere of trigonometric {F}ourier series, Mat. Sb.. Matematicheski\u{\i} Sbornik, 191, 103-126 (2000) · Zbl 0967.42004 [66] Konyagin, Sergei V., On divergence of trigonometric {F}ourier series everywhere, C. R. Acad. Sci. Paris S\'{e}r. I Math.. Comptes Rendus de l’Acad\'{e}mie des Sciences. S\'{e}rie I. Math\'{e}matique, 329, 693-697 (1999) · Zbl 0942.42002 [67] K{\"{o}}rner, T. W., Everywhere divergent {F}ourier series, Colloq. Math.. Colloquium Mathematicum, 45, 103-118 (1981) · Zbl 0491.42011 [68] Kova{\v{c}}, Vjekoslav; Thiele, Christoph; Zorin-Kranich, Pavel, Dyadic triangular {H}ilbert transform of two general functions and one not too general function, Forum Math. Sigma. Forum of Mathematics. Sigma, 3, 25-27 (2015) · Zbl 1335.42009 [69] Lacey, Michael; Thiele, Christoph, {\(L^p\)} estimates on the bilinear {H}ilbert transform for {\(2<p<\infty \)}, Ann. of Math. (2). Annals of Mathematics. Second Series, 146, 693-724 (1997) · Zbl 0914.46034 [70] Lacey, Michael; Thiele, Christoph, On {C}alder{\'{o}}n’s conjecture, Ann. of Math. (2). Annals of Mathematics. Second Series, 149, 475-496 (1999) · Zbl 0934.42012 [71] Lacey, Michael; Thiele, Christoph, A proof of boundedness of the {C}arleson operator, Math. Res. Lett.. Mathematical Research Letters, 7, 361-370 (2000) · Zbl 0966.42009 [72] Lacey, Michael, The bilinear maximal functions map into {\(L^p\)} for {\(2/3<p\leq 1\)}, Ann. of Math. (2). Annals of Mathematics. Second Series, 151, 35-57 (2000) · Zbl 0967.47031 [73] Lacey, Michael, Carleson’s theorem: proof, complements, variations, Publ. Mat.. Publicacions Matem\`atiques, 48, 251-307 (2004) · Zbl 1066.42003 [74] Lacey, Michael; Li, Xiaochun, Maximal theorems for the directional {H}ilbert transform on the plane, Trans. Amer. Math. Soc.. Transactions of the Amer. Math. Soc., 358, 4099-4117 (2006) · Zbl 1095.42010 [75] Lacey, Michael; Li, Xiaochun, On a conjecture of {E}. {M}. {S}tein on the {H}ilbert transform on vector fields, Mem. Amer. Math. Soc.. Memoirs of the Amer. Math. Soc., 205, viii+72 pp. (2010) · Zbl 1190.42005 [76] Lebesgue, Henri, Sur la divergence et la convergence non uniforme des s{\'e}ries de Fourier, C. R. Acad. Sci. Paris, 141, 875-877 (1906) · JFM 36.0331.02 [77] Lebesgue, Henri, Sur les int{\'{e}}grales singuli{\`e}res, Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys. (3). Annales de la Facult\'{e} des Sciences de Toulouse pour les Sciences Math\'{e}matiques et les Sciences Physiques. S\'{e}rie 3, 1, 25-117 (1909) · JFM 41.0327.02 [78] Lerner, Andrei K., A pointwise estimate for the local sharp maximal function with applications to singular integrals, Bull. Lond. Math. Soc.. Bulletin of the London Mathematical Society, 42, 843-856 (2010) · Zbl 1203.42023 [79] Lerner, Andrei K., On an estimate of {C}alder{\'{o}}n-{Z}ygmund operators by dyadic positive operators, J. Anal. Math.. Journal d’Analyse Math\'{e}matique, 121, 141-161 (2013) · Zbl 1285.42015 [80] Lerner, Andrei K., A simple proof of the {\(A_2\)} conjecture, Int. Math. Res. Not. IMRN. International Mathematics Research Notices. IMRN, 3159-3170 (2013) · Zbl 1318.42018 [81] Li, Xiaochun, Uniform bounds for the bilinear {H}ilbert transforms. {II}, Rev. Mat. Iberoam.. Revista Matem\'{a}tica Iberoamericana, 22, 1069-1126 (2006) · Zbl 1133.42022 [82] Lie, Victor, The (weak-{\(L^2\)}) boundedness of the quadratic {C}arleson operator, Geom. Funct. Anal.. Geometric and Functional Analysis, 19, 457-497 (2009) · Zbl 1178.42007 [83] Lie, Victor, On the pointwise convergence of the sequence of partial {F}ourier sums along lacunary subsequences, J. Funct. Anal.. Journal of Functional Analysis, 263, 3391-3411 (2012) · Zbl 1259.42005 [84] Lie, Victor, On the boundedness of the {C}arleson operator near {\(L^1\)}, Rev. Mat. Iberoam.. Revista Matem\'{a}tica Iberoamericana, 29, 1239-1262 (2013) · Zbl 1297.42011 [85] Lie, Victor, Pointwise convergence of {F}ourier series ({I}). {O}n a conjecture of {K}onyagin, J. Eur. Math. Soc. (JEMS). Journal of the European Mathematical Society (JEMS), 19, 1655-1728 (2017) · Zbl 1372.42001 [86] Lie, Victor, The pointwise convergence of {F}ourier series ({II}). {S}trong {\(L^1\)} case for the lacunary {C}arleson operator, Adv. Math.. Advances in Mathematics, 357, 106831-84 (2019) · Zbl 1429.42003 [87] Lie, Victor, A Note on the Polynomial {C}arleson Operator in higher dimensions (2017) [88] Lie, Victor, A unified approach to three themes in harmonic analysis ({\(I}\,\&\,\){II}) (2019)} [89] Littlewood, J. E.; Paley, R. E. A. C., Theorems on {F}ourier series and power series, J. London Math. Soc.. The Journal of the London Mathematical Society, 6, 230-233 (1931) · Zbl 0002.18803 [90] Luzin, N. N., Integral i trigonometri\v{c}eski\u{\i} ryad, 550 pp. (1951) [91] Marletta, Gianfranco; Ricci, Fulvio, Two-parameter maximal functions associated with homogeneous surfaces in {\( \bold R^n\)}, Studia Math.. Studia Mathematica, 130, 53-65 (1998) · Zbl 0921.42014 [92] Mauceri, Giancarlo; Picardello, Massimo A.; Ricci, Fulvio, A {H}ardy space associated with twisted convolution, Adv. in Math.. Advances in Mathematics, 39, 270-288 (1981) · Zbl 0503.46037 [93] M{\"{u}}ller, Detlef, Singular kernels supported by homogeneous submanifolds, J. Reine Angew. Math.. Journal f\"{u}r die Reine und Angewandte Mathematik. [Crelle’s Journal], 356, 90-118 (1985) · Zbl 0551.43005 [94] Muscalu, Camil; Pipher, Jill; Tao, Terence; Thiele, Christoph, Bi-parameter paraproducts, Acta Math.. Acta Mathematica, 193, 269-296 (2004) · Zbl 1087.42016 [95] Muscalu, Camil; Tao, Terence; Thiele, Christoph, {\(L^p\)} estimates for the biest. {I}. {T}he {W}alsh case, Math. Ann.. Mathematische Annalen, 329, 401-426 (2004) · Zbl 1073.42009 [96] Muscalu, Camil; Tao, Terence; Thiele, Christoph, {\(L^p\)} estimates for the biest. {II}. {T}he {F}ourier case, Math. Ann.. Mathematische Annalen, 329, 427-461 (2004) · Zbl 1073.42010 [97] Nagel, Alexander; Rivi{\`e}re, N{\'{e}}stor; Wainger, Stephen, On {H}ilbert transforms along curves, Bull. Amer. Math. Soc.. Bulletin of the Amer. Math. Soc., 80, 106-108 (1974) · Zbl 0293.44002 [98] Nagel, Alexander; Rivi{\`e}re, N{\'{e}}stor M.; Wainger, Stephen, On {H}ilbert transforms along curves. {II}, Amer. J. Math.. American Journal of Mathematics, 98, 395-403 (1976) · Zbl 0334.44012 [99] Nagel, Alexander; Stein, Elias M.; Wainger, Stephen, Hilbert transforms and maximal functions related to variable curves. Harmonic Analysis in {E}uclidean Spaces, Proc. Sympos. Pure Math., XXXV, Part, 95-98 (1979) · Zbl 0463.42008 [100] von Neumann, J., Proof of the quasi-ergodic hypothesis, Proc. Nat. Acad. Sci. U.S.A., 18, 70-82 (1932) · Zbl 0004.31004 [101] Phong, D. H.; Stein, E. M., Singular integrals related to the {R}adon transform and boundary value problems, Proc. Nat. Acad. Sci. U.S.A.. Proceedings of the National Academy of Sciences of the United States of America, 80, 7697-7701 (1983) · Zbl 0567.42010 [102] Phong, D. H.; Stein, E. M., Hilbert integrals, singular integrals, and {R}adon transforms. {I}, Acta Math.. Acta Mathematica, 157, 99-157 (1986) · Zbl 0622.42011 [103] Pramanik, Malabika; Terwilleger, Erin, A weak {\(L^2\)} estimate for a maximal dyadic sum operator on {\({\Bbb R}^n\)}, Illinois J. Math.. Illinois Journal of Mathematics, 47, 775-813 (2003) · Zbl 1040.42014 [104] Prohorenko, V. I., Divergent {F}ourier series, Mat. Sb. (N.S.), 75 (117), 185-198 (1968) · Zbl 0179.09801 [105] Ricci, F.; Stein, E. M., Oscillatory singular integrals and harmonic analysis on nilpotent groups, Proc. Nat. Acad. Sci. U.S.A.. Proceedings of the National Academy of Sciences of the United States of America, 83, 1-3 (1986) · Zbl 0583.43010 [106] Ricci, Fulvio; Stein, E. M., Harmonic analysis on nilpotent groups and singular integrals. {I}. {O}scillatory integrals, J. Funct. Anal.. Journal of Functional Analysis, 73, 179-194 (1987) · Zbl 0622.42010 [107] Ricci, Fulvio; Stein, Elias M., Harmonic analysis on nilpotent groups and singular integrals. {III}. {F}ractional integration along manifolds, J. Funct. Anal.. Journal of Functional Analysis, 86, 360-389 (1989) · Zbl 0684.22006 [108] Riesz, Marcel, Sur les fonctions conjugu\'{e}es, Math. Z.. Mathematische Zeitschrift, 27, 218-244 (1928) · JFM 53.0259.02 [109] Roth, K. F., On certain sets of integers, J. London Math. Soc.. The Journal of the London Mathematical Society, 28, 104-109 (1953) · Zbl 0050.04002 [110] Sj{\"{o}}lin, Per, An inequality of {P}aley and convergence a.e. of {W}alsh-{F}ourier series, Ark. Mat.. Arkiv f\"{o}r Matematik, 7, 551-570 (1969) · Zbl 0169.08203 [111] Sj{\"{o}}lin, Per, Convergence almost everywhere of certain singular integrals and multiple {F}ourier series, Ark. Mat.. Arkiv f\"{o}r Matematik, 9, 65-90 (1971) · Zbl 0212.41703 [112] Sj{\"{o}}lin, Per, Convolution with oscillating kernels, Indiana Univ. Math. J.. Indiana University Mathematics Journal, 30, 47-55 (1981) · Zbl 0419.47020 [113] Sj{\"{o}}lin, Per; Soria, Fernando, Remarks on a theorem by {N}. {Y}u. {A}ntonov, Studia Math.. Studia Mathematica, 158, 79-97 (2003) · Zbl 1053.42005 [114] Soria, Fernando, Note on differentiation of integrals and the halo conjecture, Studia Math.. Polska Akademia Nauk. Instytut Matematyczny. Studia Mathematica, 81, 29-36 (1985) · Zbl 0526.28003 [115] Soria, Fernando, On an extrapolation theorem of {C}arleson-{S}j{\"{o}}lin with applications to a.e. convergence of {F}ourier series, Studia Math.. Polska Akademia Nauk. Instytut Matematyczny. Studia Mathematica, 94, 235-244 (1989) · Zbl 0684.42001 [116] Stein, E. M., On limits of sequences of operators, Ann. of Math. (2). Annals of Mathematics. Second Series, 74, 140-170 (1961) · Zbl 0103.08903 [117] Stein, Elias M., Maximal functions. {I}. {S}pherical means, Proc. Nat. Acad. Sci. U.S.A.. Proceedings of the National Academy of Sciences of the United States of America, 73, 2174-2175 (1976) · Zbl 0332.42018 [118] Stein, Elias M., Oscillatory integrals related to {R}adon-like transforms. Proceedings of the {C}onference in {H}onor of {J}ean-{P}ierre {K}ahane, J. Fourier Anal. Appl.. The Journal of Fourier Analysis and Applications, Special Issue, 535-551 (1995) · Zbl 0971.42009 [119] Stein, Elias M.; Wainger, Stephen, The estimation of an integral arising in multiplier transformations, Studia Math.. Polska Akademia Nauk. Instytut Matematyczny. Studia Mathematica, 35, 101-104 (1970) · Zbl 0202.12401 [120] Stein, Elias M.; Wainger, Stephen, Problems in harmonic analysis related to curvature, Bull. Amer. Math. Soc.. Bulletin of the Amer. Math. Soc., 84, 1239-1295 (1978) · Zbl 0393.42010 [121] Stein, Elias M.; Wainger, Stephen, Oscillatory integrals related to {C}arleson’s theorem, Math. Res. Lett.. Mathematical Research Letters, 8, 789-800 (2001) · Zbl 0998.42007 [122] Strichartz, Robert S., Singular integrals supported on submanifolds, Studia Math.. Polska Akademia Nauk. Instytut Matematyczny. Studia Mathematica, 74, 137-151 (1982) · Zbl 0501.43007 [123] Szemer\'{e}di, E., On sets of integers containing no four elements in arithmetic progression, Acta Math. Acad. Sci. Hungar.. Acta Mathematica. Academiae Scientiarum Hungaricae, 20, 89-104 (1969) · Zbl 0175.04301 [124] Szemer\'{e}di, E., On sets of integers containing no {\(k\)} elements in arithmetic progression, Acta Arith.. Polska Akademia Nauk. Instytut Matematyczny. Acta Arithmetica, 27, 199-245 (1975) · Zbl 0303.10056 [125] Tao, Terence, Norm convergence of multiple ergodic averages for commuting transformations, Ergodic Theory Dynam. Systems. Ergodic Theory and Dynamical Systems, 28, 657-688 (2008) · Zbl 1181.37004 [126] Walsh, Miguel N., Norm convergence of nilpotent ergodic averages, Ann. of Math. (2). Annals of Mathematics. Second Series, 175, 1667-1688 (2012) · Zbl 1248.37008 [127] Ziegler, Tamar, Universal characteristic factors and {F}urstenberg averages, J. Amer. Math. Soc.. Journal of the Amer. Math. Soc., 20, 53-97 (2007) · Zbl 1198.37014 [128] Zorin-Kranich, P., Maximal polynomial modulations of singular integrals (2017) [129] Zygmund, A., Trigonometric Series. {V}ol. {I}, {II}, Cambridge Math. Library, xii; Vol. I: xiv+383 pp.; Vol. II: viii+364 pp. (2002) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.