×

Green functions and Glauberman degree-divisibility. (English) Zbl 1491.20026

Let \(\Gamma \) be a finite group and \(S\) be a finite solvable group acting as a group of automorphisms on \(\Gamma \) where \(S\) and \(\Gamma \) have coprime orders. G. Glauberman [Can. J. Math. 20, 1465–1488 (1968; Zbl 0167.02602)] introduced a bijection \(\theta \longmapsto \theta ^{\ast }\) between the set Irr\(_{S}(\Gamma )\) of \(S\)-invariant irreducible characters of \(\Gamma \) and the set Irr\((C_{\Gamma }(S))\) of irreducible characters of the centralizer of \(S\) in \(\Gamma \). The Glauberman degree-divisibility conjecture states that \(\theta ^{\ast }(1)\) always divides \(\theta (1)\ \)and this conjecture has been proved in special cases. In particular, B. Hartley and A. Turull [J. Reine Angew. Math. 451, 175–219 (1994; Zbl 0797.20007)] proved that the conjecture holds if \( \Gamma \) is a group of Lie type and a specific set of congruence conditions on Green functions on \(\Gamma \) are satisfied. They used this to prove the conjecture for some general classes of simple linear groups. In the present paper the author shows how Hartley and Turull’s approach [loc. cit.] via congruence conditions on Green functions can be used to prove Glauberman’s long-standing conjecture [loc. cit.] in complete generality. The proof pulls together extensive work on character sheaves by G. Lusztig [Ann. Math. (2) 131, No. 2, 355–408 (1990; Zbl 0695.20024)] and T. Shoji [Adv. Math. 111, No. 2, 244–313, 314–354 (1995; Zbl 0832.20065)].

MSC:

20C33 Representations of finite groups of Lie type
20C15 Ordinary representations and characters
20G40 Linear algebraic groups over finite fields

References:

[1] Be\u{\i}linson, A. A.; Bernstein, J.; Deligne, P., Faisceaux pervers. Analysis and Topology on Singular Spaces, {I}, Ast\'{e}risque, 100, http://www.numdam.org/issues/AST_1982__100__1_0/, 5-171 (1982)
[2] Beynon, W. M.; Spaltenstein, N., Green functions of finite {C}hevalley groups of type {\(E\sb{n} \)} {\((n=6,\,7,\,8)\)}, J. Algebra. Journal of Algebra, 88, 584-614 (1984) · Zbl 0539.20025 · doi:10.1016/0021-8693(84)90084-X
[3] Carter, Roger W., Finite Groups of {L}ie Type: Conjugacy {C}lasses and Complex Characters, Wiley Classics Library, xii+544 pp. (1993)
[4] Deligne, P.; Lusztig, G., Representations of reductive groups over finite fields, Ann. of Math. (2). Annals of Mathematics. Second Series, 103, 103-161 (1976) · Zbl 0336.20029 · doi:10.2307/1971021
[5] Geck, Meinolf, On the average values of the irreducible characters of finite groups of {L}ie type on geometric unipotent classes, Doc. Math.. Documenta Mathematica, 1, 15-293 (1996) · Zbl 0873.20011
[6] Geck, Meinolf, A first guide to the character theory of finite groups of {L}ie type. Local representation theory and simple groups, EMS Ser. Lect. Math., 63-106 (2018) · Zbl 1430.20014 · doi:10.4171/185-1/3
[7] Geck, Meinolf, On the values of unipotent characters in bad characteristic, Rend. Semin. Mat. Univ. Padova. Rendiconti del Seminario Matematico della Universit\`a di Padova, 141, 37-63 (2019) · Zbl 1472.20096 · doi:10.4171/RSMUP/14
[8] Geck, Meinolf, Computing {G}reen functions in small characteristic (2020) · Zbl 1472.20096 · doi:10.1016/j.jalgebra.2019.12.016
[9] Geck, Meinolf; Kim, Sungsoon; Pfeiffer, G\"{o}tz, Minimal length elements in twisted conjugacy classes of finite {C}oxeter groups, J. Algebra. Journal of Algebra, 229, 570-600 (2000) · Zbl 1042.20026 · doi:10.1006/jabr.1999.8253
[10] Glauberman, George, Correspondences of characters for relatively prime operator groups, Canadian J. Math.. Canadian Journal of Mathematics. Journal Canadien de Math\'{e}matiques, 20, 1465-1488 (1968) · Zbl 0167.02602 · doi:10.4153/CJM-1968-148-x
[11] Hartley, Brian; Turull, Alexandre, On characters of coprime operator groups and the {G}lauberman character correspondence, J. Reine Angew. Math.. Journal f\"{u}r die Reine und Angewandte Mathematik. [Crelle’s Journal], 451, 175-219 (1994) · Zbl 0797.20007 · doi:10.1515/crll.1994.451.175
[12] Liebeck, Martin W.; Seitz, Gary M., Unipotent and Nilpotent Classes in Simple Algebraic Groups and {L}ie Algebras, Math. Surveys Monogr., 180, xii+380 pp. (2012) · Zbl 1251.20001 · doi:10.1090/surv/180
[13] Lusztig, George, Representations of Finite {C}hevalley Groups. ({e}xpository lectures from the CBMS Regional Conference held at Madison, Wis., August 8-12, 1977), CBMS Reg. Conf. Ser. Math., 39, v+48 pp. (1978) · Zbl 0418.20037 · doi:10.1090/cbms/039
[14] Lusztig, George, Characters of Reductive Groups over a Finite Field, Ann. of Math. Stud., 107, xxi+384 pp. (1984) · Zbl 0556.20033 · doi:10.1515/9781400881772
[15] Lusztig, George, Intersection cohomology complexes on a reductive group, Invent. Math.. Inventiones Mathematicae, 75, 205-272 (1984) · Zbl 0547.20032 · doi:10.1007/BF01388564
[16] Lusztig, George, Character sheaves. {I}, Adv. in Math.. Advances in Mathematics, 56, 193-237 (1985) · Zbl 0586.20018 · doi:10.1016/0001-8708(85)90034-9
[17] Lusztig, George, Character sheaves. {II}, Adv. in Math.. Advances in Mathematics, 57, 226-265 (1985) · Zbl 0586.20019 · doi:10.1016/0001-8708(85)90064-7
[18] Lusztig, George, Character sheaves. {III}, Adv. in Math.. Advances in Mathematics, 57, 266-315 (1985) · Zbl 0594.20031 · doi:10.1016/0001-8708(85)90065-9
[19] Lusztig, George, Character sheaves. {IV}, Adv. in Math.. Advances in Mathematics, 59, 1-63 (1986) · Zbl 0602.20035 · doi:10.1016/0001-8708(86)90036-8
[20] Lusztig, George, Character sheaves. {V}, Adv. in Math.. Advances in Mathematics, 61, 103-155 (1986) · Zbl 0602.20036 · doi:10.1016/0001-8708(86)90071-X
[21] Lusztig, George, Green functions and character sheaves, Ann. of Math. (2). Annals of Mathematics. Second Series, 131, 355-408 (1990) · Zbl 0695.20024 · doi:10.2307/1971496
[22] Lusztig, George, Character sheaves on disconnected groups. {IV}, Represent. Theory. Representation Theory. An Electronic Journal of the Amer. Math. Soc., 8, 145-178 (2004) · Zbl 1075.20013 · doi:10.1090/S1088-4165-04-00240-7
[23] Lusztig, George, On the cleanness of cuspidal character sheaves, Mosc. Math. J.. Moscow Mathematical Journal, 12, 621-631 (2012) · Zbl 1263.20044 · doi:10.17323/1609-4514-2012-12-3-621-631
[24] Mizuno, Kenzo, The conjugate classes of unipotent elements of the {C}hevalley groups {\(E\sb{7} \)} and {\(E\sb{8} \)}, Tokyo J. Math.. Tokyo Journal of Mathematics, 3, 391-461 (1980) · Zbl 0454.20046 · doi:10.3836/tjm/1270473003
[25] Navarro, Gabriel, Some open problems on coprime action and character correspondences, Bull. London Math. Soc.. The Bulletin of the London Mathematical Society, 26, 513-522 (1994) · Zbl 0829.20013 · doi:10.1112/blms/26.6.513
[26] Navarro, Gabriel, Character Theory and the {M}c{K}ay Conjecture, Cambridge Stud. Adv. Math., 175, xviii+234 pp. (2018) · Zbl 1433.20001 · doi:10.1017/9781108552790
[27] Shoji, Toshiaki, Green functions of reductive groups over a finite field. The {A}rcata {C}onference on {R}epresentations of {F}inite {G}roups, Proc. Sympos. Pure Math., 47, 289-301 (1987) · Zbl 0648.20047
[28] Shoji, Toshiaki, Character sheaves and almost characters of reductive groups. {I}, Adv. Math.. Advances in Mathematics, 111, 244-313 (1995) · Zbl 0832.20065 · doi:10.1006/aima.1995.1024
[29] Shoji, Toshiaki, Character sheaves and almost characters of reductive groups. {II}, Adv. Math.. Advances in Mathematics, 111, 314-354 (1995) · Zbl 0832.20065 · doi:10.1006/aima.1995.1024
[30] Shoji, Toshiaki, Generalized {G}reen functions and unipotent classes for finite reductive groups. {I}, Nagoya Math. J.. Nagoya Mathematical Journal, 184, 155-198 (2006) · Zbl 1128.20033 · doi:10.1017/S0027763000009338
[31] Shoji, Toshiaki, Generalized {G}reen functions and unipotent classes for finite reductive groups. {II}, Nagoya Math. J.. Nagoya Mathematical Journal, 188, 133-170 (2007) · Zbl 1133.20036 · doi:10.1017/S0027763000009478
[32] Shoji, Toshiaki, Generalized {G}reen functions associated to complex reflection groups, J. Algebra. Journal of Algebra, 558, 677-707 (2020) · Zbl 1458.20016 · doi:10.1016/j.jalgebra.2019.04.020
[33] Steinberg, Robert, Endomorphisms of Linear Algebraic Groups, Mem. Amer. Math. Soc., 80, 108 pp. (1968) · Zbl 0164.02902 · doi:10.1090/memo/0080
[34] Taylor, Jay, On unipotent supports of reductive groups with a disconnected centre, J. Algebra. Journal of Algebra, 391, 41-61 (2013) · Zbl 1286.20060 · doi:10.1016/j.jalgebra.2013.06.004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.