×

zbMATH — the first resource for mathematics

Regularization properties of LSQR for linear discrete ill-posed problems in the multiple singular value case and best, near best and general low rank approximations. (English) Zbl 07239314
MSC:
65F10 Iterative numerical methods for linear systems
65F22 Ill-posedness and regularization problems in numerical linear algebra
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aster R C, Borchers B and Thurber C H 2013 Parameter Estimation and Inverse Problems 2nd edn (New York: Elsevier)
[2] Berisha S and Nagy J G 2012 Restore tools: iterative methods for image restoration available from http://mathcs.emory.edu/∼nagy/RestoreTools
[3] Björck Å 1988 A bidiagonalization algorithm for solving large and sparse ill-posed systems of linear equations BIT28 659-70 · Zbl 0658.65041
[4] Björck Å 1996 Numerical Methods for Least Squares Problems (Philadelphia, PA: SIAM) · Zbl 0847.65023
[5] Björck Å 2015 Numerical Methods in Matrix Computations (Berlin: Springer) · Zbl 1322.65047
[6] Björck Å and Eldén L 1979 Methods in numerical algebra for ill-posed problems (Sweden: Deptartment of Mathematics, Linköping Univeristy) Report LiTH-R-33-1979
[7] Björck Å, Grimme E and van Dooren P 1994 An implicit shift bidiagonalization algorithm for ill-posed systems BIT Numer. Math.34 510-34 · Zbl 0821.65023
[8] Chung J, Nagy J G and O’Leary D P 2007/08 A weighted-GCV method for Lanczos-hybrid regularization Electr. Trans. Numer. Anal.28 149-67 · Zbl 1171.65029
[9] Chung J and Palmer K 2015 A hybrid LSMR algorithm for large-scale Tikhonov regularization SIAM J. Sci. Comput.37 S562-80 · Zbl 1320.65058
[10] Craig E J 1955 The N-step iteration procedures J. Math. Phys.34 64-73 · Zbl 0065.10901
[11] Engl H W 1993 Regularization methods for the stable solution of inverse problems Surv. Math. Ind.3 71-143 · Zbl 0776.65043
[12] Engl H W, Hanke M and Neubauer A 2000 Regularization of Inverse Problems (Dordrecht: Kluwer)
[13] Fierro R D, Golub G H, Hansen P C and O’Leary D P 1997 Regularization by truncated total least squares SIAM J. Sci. Comput.18 1223-41 · Zbl 0891.65040
[14] Fong D C L and Saunders M 2011 LSMR: an iterative algorithm for sparse least-squares problems SIAM J. Sci. Comput.33 2950-71 · Zbl 1232.65052
[15] Gazzola S, Hansen P C and Nagy J G 2019 IR tools: a MATLAB package of iterative regularization methods and large-scale test problems Numer. Algorithms81 773-811 · Zbl 1415.65003
[16] Gazzola S and Novati P 2016 Inheritance of the discrete Picard condition in Krylov subspace methods BIT Numer. Math.56 893-918 · Zbl 1353.65023
[17] Gilyazov S F and Gol’dman N L 2000 Regularization of Ill-Posed Problems by Iteration Methods (Dordrecht: Kluwer Academic Publishers) · Zbl 0943.65066
[18] Hanke M 1995 Conjugate Gradient Type Methods for Ill-Posed Problems (London: Longman) Pitman Research Notes in Mathematics Series · Zbl 0830.65043
[19] Hanke M 2001 On Lanczos based methods for the regularization of discrete ill-posed problems BIT Numer. Math41 1008-18
[20] Hanke M and Hansen P C 1993 Regularization methods for large-scale problems Surv. Math. Ind.3 253-315 · Zbl 0805.65058
[21] Hanke M and Nagy J G 1996 Restoration of atmospherically blurred images by symmetric indefinite conjugate gradient techniques Inverse Problems12 157-73 · Zbl 0859.65141
[22] Hansen P C 1990 Truncated singular value decomposition solutions to discrete ill-posed problems with ill-determined numerical rank SIAM J. Sci. Stat. Comput.11 503-18 · Zbl 0699.65029
[23] Hansen P C 1998 Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion (Philadelphia, PA: SIAM) · Zbl 0890.65037
[24] Hansen P C 2007 Regularization Tools version 4.0 for Matlab 7.3 Numer. Algorithms46 189-94 · Zbl 1128.65029
[25] Hansen P C 2010 Discrete Inverse Problems: Insight and Algorithms (Philadelphia, PA: SIAM) · Zbl 1197.65054
[26] Hestenes M R and Stiefel E 1952 Methods of conjugate gradients for solving linear systems J. Res. Natl Bur. Stand.49 409-36 · Zbl 0048.09901
[27] Hnětynková M R, Kubínová M and Plešinger M 2017 Noise representation in residuals of LSQR, LSMR, and Craig regularization Lin. Algebra Appl.533 357-79 · Zbl 1391.15062
[28] Hnětynková M R, Plešinger M and Strakoš Z 2009 The regularizing effect of the Golub-Kahan iterative bidiagonalization and revealing the noise level in the data BIT Numer. Math.49 669-96 · Zbl 1184.65044
[29] Hofmann B 1986 Regularization for Applied Inverse and Ill-Posed Problems (Leipzig: Teubner) · Zbl 0606.65038
[30] Huang Y and Jia Z 2017 Some results on the regularization of LSQR for large-scale ill-posed problems Sci. China Math.60 701-18 · Zbl 06855824
[31] Huang Y and Jia Z 2017 On regularizing effects of MINRES and MR-II for large-scale symmetric discrete ill-posed problems J. Comput. Appl. Math.320 145-63 · Zbl 1372.65119
[32] Jensen T K and Hansen P C 2007 Iterative regularization with minimum-residual methods BIT Numer. Math.47 103-20 · Zbl 1113.65037
[33] Jia Z 2020 Approximation accuracy of the Krylov subspaces for linear discrete ill-posed problems J. Comput. Appl. Math.374 112786 · Zbl 1434.65043
[34] Jia Z 2020 The low rank approximations and Ritz values in LSQR for linear discrete ill-posed problems Inverse Problems36 045013
[35] Jia Z 2020 Regularization properties of the Krylov iterative solvers CGME and LSMR for linear discrete ill-posed problems with an application to truncated randomized SVDs Numer. Algorithms
[36] Jia Z and Yang Y 2020 A joint bidiagonalization based iterative algorithm for large scale general-form Tikhonov regularization Appl. Numer. Math.157 159-77 · Zbl 07235997
[37] Kaipio J and Somersalo E 2005 Statistical and Computational Inverse Problems (New York: Springer)
[38] Kern M 2016 Numerical Methods for Inverse Problems (New York: Wiley) · Zbl 1342.65138
[39] Kilmer M E and Stewart G W 1999 Iterative regularization and MINRES SIAM J. Matrix Anal. Appl.21 613-28 · Zbl 0951.65037
[40] Kirsch A 2011 An Introduction to the Mathematical Theory of Inverse Problems (New York: Springer) · Zbl 1213.35004
[41] Mueller J L and Siltanen S 2012 Linear and Nonlinear Inverse Problems with Practical Applications (Philadelphia, PA: SIAM) · Zbl 1262.65124
[42] Natterer F 2001 The Mathematics of Computerized Tomography (Philadelphia, PA: SIAM) · Zbl 0973.92020
[43] Nolet G 1985 Solving or resolving inadequate and noisy tomographic systems J. Comput. Phys.61 463-82 · Zbl 0589.65086
[44] O’Leary D P and Simmons J A 1981 A bidiagonalization-regularization procedure for large scale discretizations of ill-posed problems SIAM J. Sci. Stat. Comput.2 474-89 · Zbl 0469.65089
[45] Paige C C and Saunders M A 1982 LSQR: an algorithm for sparse linear equations and sparse least squares ACM Trans. Math Software8 43-71 · Zbl 0478.65016
[46] Paige C C and Strakoš Z Z 2005 Core problems in linear algebraic systems SIAM J. Matrix Anal. Appl.26 861-75 · Zbl 1097.15003
[47] Renaut R A, Vatankhah S and Ardestani V E 2017 Hybrid and iteratively reweighted regularization by unbiased predictive risk and weighted GCV SIAM J. Sci. Comput.39 B221-43 · Zbl 1360.65115
[48] Scales J A and Gerztenkorn A 1988 Robust methods in inverse theory Inverse Problems4 1071-91 · Zbl 0672.65019
[49] Stewart G W 2001 Matrix Algorithms II: Eigensystems (Philadelphia, PA: SIAM) · Zbl 0984.65031
[50] Stewart G W and Sun J G 1990 Matrix Perturbation Theory (New York: Academic, Inc)
[51] van der Sluis A and van der Vorst H A 1986 The rate of convergence of conjugate gradients Numer. Math.48 543-60 · Zbl 0596.65015
[52] Varah J M 1979 A practical examination of some numerical methods for linear discrete ill-posed problems SIAM Rev.21 100-11 · Zbl 0406.65015
[53] Vogel C R 2002 Computational Methods for Inverse Problems (Philadelphia, PA: SIAM) · Zbl 1008.65103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.