×

zbMATH — the first resource for mathematics

Hybrid multigrid methods for high-order discontinuous Galerkin discretizations. (English) Zbl 1440.65135
Summary: The present work develops hybrid multigrid methods for high-order discontinuous Galerkin discretizations of elliptic problems, which are, for example, a key ingredient of incompressible flow solvers in the field of computational fluid dynamics. Fast matrix-free operator evaluation on tensor product elements is used to devise a computationally efficient PDE solver. The multigrid hierarchy exploits all possibilities of geometric, polynomial, and algebraic coarsening, targeting engineering applications on complex geometries. Additionally, a transfer from discontinuous to continuous function spaces is performed within the multigrid hierarchy. This does not only further reduce the problem size of the coarse-grid problem, but also leads to a discretization most suitable for state-of-the-art algebraic multigrid methods applied as coarse-grid solver. The relevant design choices regarding the selection of optimal multigrid coarsening strategies among the various possibilities are discussed with the metric of computational costs as the driving force for algorithmic selections. We find that a transfer to a continuous function space at highest polynomial degree (or on the finest mesh), followed by polynomial and geometric coarsening, shows the best overall performance. The success of this particular multigrid strategy is due to a significant reduction in iteration counts as compared to a transfer from discontinuous to continuous function spaces at lowest polynomial degree (or on the coarsest mesh). The coarsening strategy with transfer to a continuous function space on the finest level leads to a multigrid algorithm that is robust with respect to the penalty parameter of the symmetric interior penalty method. Detailed numerical investigations are conducted for a series of examples ranging from academic test cases to more complex, practically relevant geometries. Performance comparisons to state-of-the-art methods from the literature demonstrate the versatility and computational efficiency of the proposed multigrid algorithms.
MSC:
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M55 Multigrid methods; domain decomposition for initial value and initial-boundary value problems involving PDEs
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
Software:
Exa-Dune; ML; p4est
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Orszag, S. A., Spectral methods for problems in complex geometries, J. Comput. Phys., 37, 70-92 (1980) · Zbl 0476.65078
[2] Kopriva, D. A., Implementing Spectral Methods for Partial Differential Equations: Algorithms for Scientists and Engineers (2009), Springer · Zbl 1172.65001
[3] Deville, M. O.; Fischer, P. F.; Mund, E. H., High-Order Methods for Incompressible Fluid Flow, Vol. 9 (2002), Cambridge University Press · Zbl 1007.76001
[4] Karniadakis, G. E.; Sherwin, S. J., Spectral/hp Element Methods for Computational Fluid Dynamics (2013), Oxford University Press · Zbl 1256.76003
[5] Kronbichler, M.; Kormann, K., A generic interface for parallel cell-based finite element operator application, Comput. Fluids, 63, 135-147 (2012) · Zbl 1365.76121
[6] Kronbichler, M.; Kormann, K., Fast matrix-free evaluation of discontinuous Galerkin finite element operators, ACM Trans. Math. Softw., 45, 3, Article 29 pp. (2019) · Zbl 07193378
[7] Müthing, S.; Piatkowski, M.; Bastian, P., High-performance implementation of matrix-free high-order discontinuous Galerkin methods (2017), arXiv preprint
[8] Vos, P. E.; Sherwin, S. J.; Kirby, R. M., From h to p efficiently: implementing finite and spectral/hp element methods to achieve optimal performance for low- and high-order discretisations, J. Comput. Phys., 229, 13, 5161-5181 (2010) · Zbl 1194.65138
[9] Cantwell, C.; Sherwin, S.; Kirby, R.; Kelly, P., From h to p efficiently: strategy selection for operator evaluation on hexahedral and tetrahedral elements, Comput. Fluids, 43, 1, 23-28 (2011), Symposium on High Accuracy Flow Simulations. Special Issue Dedicated to Prof. Michel Deville · Zbl 1452.76168
[10] Kronbichler, M.; Ljungkvist, K., Multigrid for matrix-free high-order finite element computations on graphics processors, ACM Trans. Parallel Comput., 6, 1, Article 2 pp. (2019)
[11] Kirby, R. M.; Sherwin, S. J.; Cockburn, B., To CG or to HDG: a comparative study, J. Sci. Comput., 51, 1, 183-212 (2012) · Zbl 1244.65174
[12] Yakovlev, S.; Moxey, D.; Kirby, R. M.; Sherwin, S. J., To CG or to HDG: a comparative study in 3D, J. Sci. Comput., 67, 1, 192-220 (2016) · Zbl 1339.65225
[13] Kronbichler, M.; Wall, W. A., A performance comparison of continuous and discontinuous Galerkin methods with fast multigrid solvers, SIAM J. Sci. Comput., 40, 5, A3423-A3448 (2018) · Zbl 1402.65163
[14] Brown, J., Efficient nonlinear solvers for nodal high-order finite elements in 3D, J. Sci. Comput., 45, 1, 48-63 (2010) · Zbl 1203.65245
[15] Fehn, N.; Wall, W. A.; Kronbichler, M., Efficiency of high-performance discontinuous Galerkin spectral element methods for under-resolved turbulent incompressible flows, Int. J. Numer. Methods Fluids, 88, 1, 32-54 (2018)
[16] Trottenberg, U.; Oosterlee, C.; Schüller Multigrid, A. (2001), Elsevier Academic Press: Elsevier Academic Press London
[17] Gholami, A.; Malhotra, D.; Sundar, H.; Biros, G., FFT, FMM, or multigrid? A comparative study of state-of-the-art Poisson solvers for uniform and nonuniform grids in the unit cube, SIAM J. Sci. Comput., 38, 3, C280-C306 (2016) · Zbl 1369.65138
[18] Gopalakrishnan, J.; Kanschat, G., A multilevel discontinuous Galerkin method, Numer. Math., 95, 3, 527-550 (2003) · Zbl 1044.65084
[19] Hemker, P.; Hoffmann, W.; van Raalte, M., Two-level Fourier analysis of a multigrid approach for discontinuous Galerkin discretization, SIAM J. Sci. Comput., 25, 3, 1018-1041 (2003) · Zbl 1048.65108
[20] Brenner, S. C.; Zhao, J., Convergence of multigrid algorithms for interior penalty methods, Appl. Numer. Anal. Comput. Math., 2, 1, 3-18 (2005) · Zbl 1073.65117
[21] Brenner, S. C.; Cui, J.; Sung, L.-Y., Multigrid methods for the symmetric interior penalty method on graded meshes, Numer. Linear Algebra Appl., 16, 6, 481-501 (2009) · Zbl 1224.65288
[22] Kanschat, G., Multi-level methods for discontinuous Galerkin FEM on locally refined meshes, Comput. Struct., 82, 28, 2437-2445 (2004)
[23] Kanschat, G., Robust smoothers for high order discontinuous Galerkin discretizations of advection-diffusion problems, J. Comput. Appl. Math., 218, 53-60 (2008) · Zbl 1143.65097
[24] Clevenger, T. C.; Heister, T.; Kanschat, G.; Kronbichler, M., A flexible, parallel, adaptive geometric multigrid method for FEM (2019), arXiv preprint
[25] Krank, B.; Fehn, N.; Wall, W. A.; Kronbichler, M., A high-order semi-explicit discontinuous Galerkin solver for 3D incompressible flow with application to DNS and LES of turbulent channel flow, J. Comput. Phys., 348, 634-659 (2017) · Zbl 1380.76040
[26] Rønquist, E. M.; Patera, A. T., Spectral element multigrid. I. Formulation and numerical results, J. Sci. Comput., 2, 4, 389-406 (1987) · Zbl 0666.65055
[27] Maday, Y.; Munoz, R., Spectral element multigrid. II. Theoretical justification, J. Sci. Comput., 3, 4, 323-353 (1988) · Zbl 0695.65058
[28] Helenbrook, B.; Mavriplis, D.; Atkins, H., Analysis of “p”-multigrid for continuous and discontinuous finite element discretizations, (16th AIAA Computational Fluid Dynamics Conference (2003)), 3989
[29] Helenbrook, B. T.; Atkins, H., Solving discontinuous Galerkin formulations of Poisson’s equation using geometric and p multigrid, AIAA J., 46, 4, 894-902 (2008)
[30] Mascarenhas, B. S.; Helenbrook, B. T.; Atkins, H. L., Coupling p-multigrid to geometric multigrid for discontinuous Galerkin formulations of the convection-diffusion equation, J. Comput. Phys., 229, 10, 3664-3674 (2010) · Zbl 1190.65113
[31] Lottes, J. W.; Fischer, P. F., Hybrid multigrid/Schwarz algorithms for the spectral element method, J. Sci. Comput., 24, 1, 45-78 (2005) · Zbl 1078.65570
[32] Stiller, J., Nonuniformly weighted Schwarz smoothers for spectral element multigrid, J. Sci. Comput., 72, 1, 81-96 (2017) · Zbl 1371.65122
[33] Stiller, J., Robust multigrid for high-order discontinuous Galerkin methods: a fast Poisson solver suitable for high-aspect ratio Cartesian grids, J. Comput. Phys., 327, 317-336 (2016) · Zbl 1422.65412
[34] Stiller, J., Robust multigrid for Cartesian interior penalty DG formulations of the Poisson equation in 3D, (Bittencourt, M. L.; Dumont, N. A.; Hesthaven, J. S., Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016 (2017), Springer International Publishing: Springer International Publishing Cham), 189-201 · Zbl 1382.65454
[35] Huismann, I.; Stiller, J.; Fröhlich, J., Scaling to the stars – a linearly scaling elliptic solver for p-multigrid, J. Comput. Phys., 398, Article 108868 pp. (2019)
[36] Aizinger, V.; Kuzmin, D.; Korous, L., Scale separation in fast hierarchical solvers for discontinuous Galerkin methods, Appl. Math. Comput., 266, 838-849 (2015) · Zbl 1410.65362
[37] Rasetarinera, P.; Hussaini, M., An efficient implicit discontinuous spectral Galerkin method, J. Comput. Phys., 172, 2, 718-738 (2001) · Zbl 0986.65093
[38] Bassi, F.; Rebay, S., Numerical solution of the Euler equations with a multiorder discontinuous finite element method, (Armfield, S. W.; Morgan, P.; Srinivas, K., Computational Fluid Dynamics 2002 (2003), Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg), 199-204 · Zbl 1140.76360
[39] Fidkowski, K.; Darmofal, D., Development of a higher-order solver for aerodynamic applications, (42nd AIAA Aerospace Sciences Meeting and Exhibit (2004)), 436
[40] Nastase, C. R.; Mavriplis, D. J., High-order discontinuous Galerkin methods using an hp-multigrid approach, J. Comput. Phys., 213, 1, 330-357 (2006) · Zbl 1089.65100
[41] Luo, H.; Baum, J. D.; Löhner, R., A p-multigrid discontinuous Galerkin method for the Euler equations on unstructured grids, J. Comput. Phys., 211, 2, 767-783 (2006) · Zbl 1138.76408
[42] Hillewaert, K.; Chevaugeon, N.; Geuzaine, P.; Remacle, J.-F., Hierarchic multigrid iteration strategy for the discontinuous Galerkin solution of the steady Euler equations, Int. J. Numer. Methods Fluids, 51, 9-10, 1157-1176 (2006) · Zbl 1139.76033
[43] Mascarenhas, B. S.; Helenbrook, B. T.; Atkins, H. L., Application of p-multigrid to discontinuous Galerkin formulations of the Euler equations, AIAA J., 47, 5, 1200-1208 (2009)
[44] Bassi, F.; Ghidoni, A.; Rebay, S.; Tesini, P., High-order accurate p-multigrid discontinuous Galerkin solution of the Euler equations, Int. J. Numer. Methods Fluids, 60, 8, 847-865 (2009) · Zbl 1165.76022
[45] Helenbrook, B. T.; Mascarenhas, B. S., Analysis of implicit time-advancing p-multigrid schemes for discontinuous Galerkin discretizations of the Euler equations, (46th AIAA Fluid Dynamics Conference (2016)), 3494
[46] Fidkowski, K. J.; Oliver, T. A.; Lu, J.; Darmofal, D. L., p-Multigrid solution of high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations, J. Comput. Phys., 207, 1, 92-113 (2005) · Zbl 1177.76194
[47] Persson, P.; Peraire, J., Newton-GMRES preconditioning for discontinuous Galerkin discretizations of the Navier-Stokes equations, SIAM J. Sci. Comput., 30, 6, 2709-2733 (2008) · Zbl 1362.76052
[48] Shahbazi, K.; Mavriplis, D. J.; Burgess, N. K., Multigrid algorithms for high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations, J. Comput. Phys., 228, 21, 7917-7940 (2009) · Zbl 1391.65181
[49] Diosady, L. T.; Darmofal, D. L., Preconditioning methods for discontinuous Galerkin solutions of the Navier-Stokes equations, J. Comput. Phys., 228, 11, 3917-3935 (2009) · Zbl 1185.76812
[50] Bassi, F.; Franchina, N.; Ghidoni, A.; Rebay, S., Spectral p-multigrid discontinuous Galerkin solution of the Navier-Stokes equations, Int. J. Numer. Methods Fluids, 67, 11, 1540-1558 (2011) · Zbl 1426.76497
[51] Luo, H.; Segawa, H.; Visbal, M. R., An implicit discontinuous Galerkin method for the unsteady compressible Navier-Stokes equations, Comput. Fluids, 53, 133-144 (2012) · Zbl 1271.76169
[52] Ghidoni, A.; Colombo, A.; Bassi, F.; Rebay, S., Efficient p-multigrid discontinuous Galerkin solver for complex viscous flows on stretched grids, Int. J. Numer. Methods Fluids, 75, 2, 134-154 (2014) · Zbl 1417.76023
[53] Heys, J.; Manteuffel, T.; McCormick, S.; Olson, L., Algebraic multigrid for higher-order finite elements, J. Comput. Phys., 204, 2, 520-532 (2005) · Zbl 1060.65673
[54] Lasser, C.; Toselli, A., Overlapping preconditioners for discontinuous Galerkin approximations of second order problems, (Debit, N.; Garbey, M.; Hoppe, R.; Périaux, J.; Keyes, D.; Kuznetsov, Y., Thirteenth International Conference on Domain Decomposition Methods (2001)), 77-84 · Zbl 1026.65097
[55] Prill, F.; Lukáčová-Medviďová, M.; Hartmann, R., Smoothed aggregation multigrid for the discontinuous Galerkin method, SIAM J. Sci. Comput., 31, 5, 3503-3528 (2009) · Zbl 1200.35059
[56] Olson, L. N.; Schroder, J. B., Smoothed aggregation multigrid solvers for high-order discontinuous Galerkin methods for elliptic problems, J. Comput. Phys., 230, 18, 6959-6976 (2011) · Zbl 1252.65200
[57] Bastian, P.; Blatt, M.; Scheichl, R., Algebraic multigrid for discontinuous Galerkin discretizations of heterogeneous elliptic problems, Numer. Linear Algebra Appl., 19, 2, 367-388 (2012) · Zbl 1274.65313
[58] Siefert, C.; Tuminaro, R.; Gerstenberger, A.; Scovazzi, G.; Collis, S. S., Algebraic multigrid techniques for discontinuous Galerkin methods with varying polynomial order, Comput. Geosci., 18, 5, 597-612 (2014) · Zbl 1396.65151
[59] Bastian, P.; Müller, E. H.; Müthing, S.; Piatkowski, M., Matrix-free multigrid block-preconditioners for higher order discontinuous Galerkin discretisations, J. Comput. Phys., 394, 417-439 (2019)
[60] Adams, M.; Brezina, M.; Hu, J.; Tuminaro, R., Parallel multigrid smoothing: polynomial versus Gauss-Seidel, J. Comput. Phys., 188, 2, 593-610 (2003) · Zbl 1022.65030
[61] Sundar, H.; Stadler, G.; Biros, G., Comparison of multigrid algorithms for high-order continuous finite element discretizations, Numer. Linear Algebra Appl., 22, 4, 664-680 (2015) · Zbl 1349.65680
[62] Rueda-Ramírez, A. M.; Manzanero, J.; Ferrer, E.; Rubio, G.; Valero, E., A p-multigrid strategy with anisotropic p-adaptation based on truncation errors for high-order discontinuous Galerkin methods, J. Comput. Phys., 378, 209-233 (2019) · Zbl 1416.65357
[63] Lynch, R. E.; Rice, J. R.; Thomas, D. H., Direct solution of partial difference equations by tensor product methods, Numer. Math., 6, 1, 185-199 (1964) · Zbl 0126.12703
[64] Couzy, W.; Deville, M. O., Spectral-element preconditioners for the Uzawa pressure operator applied to incompressible flows, J. Sci. Comput., 9, 2, 107-122 (1994) · Zbl 0822.76066
[65] Couzy, W.; Deville, M., A fast Schur complement method for the spectral element discretization of the incompressible Navier-Stokes equations, J. Comput. Phys., 116, 1, 135-142 (1995) · Zbl 0832.76068
[66] Fischer, P. F.; Tufo, H. M.; Miller, N. I., An overlapping Schwarz method for spectral element simulation of three-dimensional incompressible flows, (Bjørstad, P.; Luskin, M., Parallel Solution of Partial Differential Equations (2000), Springer New York: Springer New York New York, NY), 159-180 · Zbl 0991.76059
[67] Fischer, P. F.; Lottes, J. W., Hybrid Schwarz-multigrid methods for the spectral element method: extensions to Navier-Stokes, (Barth, T. J.; Griebel, M.; Keyes, D. E.; Nieminen, R. M.; Roose, D.; Schlick, T.; Kornhuber, R.; Hoppe, R.; Périaux, J.; Pironneau, O.; Widlund, O.; Xu, J., Domain Decomposition Methods in Science and Engineering (2005), Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg), 35-49 · Zbl 1067.65123
[68] Witte, J.; Arndt, D.; Kanschat, G., Fast tensor product Schwarz smoothers for high-order discontinuous Galerkin methods (2019), arXiv preprint
[69] Pazner, W.; Persson, P.-O., Approximate tensor-product preconditioners for very high order discontinuous Galerkin methods, J. Comput. Phys., 354, 344-369 (2018) · Zbl 1380.65067
[70] Sundar, H.; Biros, G.; Burstedde, C.; Rudi, J.; Ghattas, O.; Stadler, G., Parallel geometric-algebraic multigrid on unstructured forests of octrees, (Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis (2012), IEEE Computer Society Press), 43
[71] Helenbrook, B., A two-fluid spectral-element method, Comput. Methods Appl. Mech. Eng., 191, 3, 273-294 (2001) · Zbl 0999.76101
[72] Dobrev, V. A.; Lazarov, R. D.; Vassilevski, P. S.; Zikatanov, L. T., Two-level preconditioning of discontinuous Galerkin approximations of second-order elliptic equations, Numer. Linear Algebra Appl., 13, 9, 753-770 (2006) · Zbl 1224.65263
[73] Lu, C.; Jiao, X.; Missirlis, N., A hybrid geometric + algebraic multigrid method with semi-iterative smoothers, Numer. Linear Algebra Appl., 21, 2, 221-238 (2014) · Zbl 1340.65301
[74] Rudi, J.; Malossi, A. C.I.; Isaac, T.; Stadler, G.; Gurnis, M.; Staar, P. W.J.; Ineichen, Y.; Bekas, C.; Curioni, A.; Ghattas, O., An extreme-scale implicit solver for complex PDEs: highly heterogeneous flow in Earth’s mantle, (Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (2015), ACM), 5
[75] O’Malley, B.; Kópházi, J.; Smedley-Stevenson, R.; Eaton, M., P-multigrid expansion of hybrid multilevel solvers for discontinuous Galerkin finite element discrete ordinate (DG-FEM-SN) diffusion synthetic acceleration (DSA) of radiation transport algorithms, Prog. Nucl. Energy, 98, 177-186 (2017)
[76] Kempf, D.; Heß, R.; Müthing, S.; Bastian, P., Automatic code generation for high-performance discontinuous Galerkin methods on modern architectures (2018), arXiv preprint
[77] Bastian, P.; Engwer, C.; Göddeke, D.; Iliev, O.; Ippisch, O.; Ohlberger, M.; Turek, S.; Fahlke, J.; Kaulmann, S.; Müthing, S.; Ribbrock EXA-DUNE, D., Flexible PDE solvers, numerical methods and applications, (Euro-Par 2014: Parallel Processing Workshops. Euro-Par 2014: Parallel Processing Workshops, Lecture Notes in Computer Science, vol. 8806 (2014), Springer), 530-541
[78] Alzetta, G.; Arndt, D.; Bangerth, W.; Boddu, V.; Brands, B.; Davydov, D.; Gassmoeller, R.; Heister, T.; Heltai, L.; Kormann, K.; Kronbichler, M.; Maier, M.; Pelteret, J.-P.; Turcksin, B.; Wells, D., The deal.II library, version 9.0, J. Numer. Math., 26, 4, 173-184 (2018) · Zbl 1410.65363
[79] Münch, P., An efficient hybrid multigrid solver for high-order discontinuous Galerkin methods (2018), University of Munich, Master’s Thesis, Technical
[80] Fabien, M.; Knepley, M.; Mills, R.; Rivière, B., Manycore parallel computing for a hybridizable discontinuous Galerkin nested multigrid method, SIAM J. Sci. Comput., 41, 2, C73-C96 (2019) · Zbl 1412.65129
[81] Deville, M.; Mund, E., Chebyshev pseudospectral solution of second-order elliptic equations with finite element preconditioning, J. Comput. Phys., 60, 3, 517-533 (1985) · Zbl 0585.65073
[82] Deville, M.; Mund, E., Finite-element preconditioning for pseudospectral solutions of elliptic problems, SIAM J. Sci. Stat. Comput., 11, 2, 311-342 (1990) · Zbl 0701.65075
[83] Fischer, P. F., An overlapping Schwarz method for spectral element solution of the incompressible Navier-Stokes equations, J. Comput. Phys., 133, 1, 84-101 (1997) · Zbl 0904.76057
[84] Pazner, W., Efficient low-order refined preconditioners for high-order matrix-free continuous and discontinuous Galerkin methods (2019), arXiv preprint
[85] Kronbichler, M.; Kormann, K.; Fehn, N.; Munch, P.; Witte, J., A Hermite-like basis for faster matrix-free evaluation of interior penalty discontinuous Galerkin operators (2019), arXiv preprint
[86] Bastian, P., A fully-coupled discontinuous Galerkin method for two-phase flow in porous media with discontinuous capillary pressure, Comput. Geosci., 18, 5, 779-796 (2014) · Zbl 1392.76072
[87] Arnold, D. N., An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal., 19, 4, 742-760 (1982) · Zbl 0482.65060
[88] Arnold, D. N.; Brezzi, F.; Cockburn, B.; Marini, L. D., Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39, 5, 1749-1779 (2002) · Zbl 1008.65080
[89] Hesthaven, J. S.; Warburton, T., Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications (2007), Springer
[90] Hillewaert, K., Development of the discontinuous Galerkin method for high-resolution, large scale CFD and acoustics in industrial geometries (2013), Univ. de Louvain, Ph.D. thesis
[91] Hestenes, M. R.; Stiefel, E., Methods of Conjugate Gradients for Solving Linear Systems, Vol. 49 (1952), NBS: NBS Washington, DC · Zbl 0048.09901
[92] Saad, Y., Iterative Methods for Sparse Linear Systems (2003), SIAM: SIAM Philadelphia · Zbl 1002.65042
[93] Gmeiner, B.; Rüde, U.; Stengel, H.; Waluga, C.; Wohlmuth, B., Towards textbook efficiency for parallel multigrid, Numer. Math., Theory Methods Appl., 8, 1, 22-46 (2015) · Zbl 1340.65296
[94] Antonietti, P.; Sarti, M.; Verani, M., Multigrid algorithms for hp-discontinuous Galerkin discretizations of elliptic problems, SIAM J. Numer. Anal., 53, 1, 598-618 (2015) · Zbl 1312.65181
[95] Burstedde, C.; Wilcox, L. C.; Ghattas, O., p4est: Scalable algorithms for parallel adaptive mesh refinement on forests of octrees, SIAM J. Sci. Comput., 33, 3, 1103-1133 (2011) · Zbl 1230.65106
[96] Janssen, B.; Kanschat, G., Adaptive multilevel methods with local smoothing for \(H^1\)-and \(H^{\operatorname{curl}} \)-conforming high order finite element methods, SIAM J. Sci. Comput., 33, 4, 2095-2114 (2011) · Zbl 1230.65133
[97] Remacle, J.-F.; Gandham, R.; Warburton, T., GPU accelerated spectral finite elements on all-hex meshes, J. Comput. Phys., 324, 246-257 (2016) · Zbl 1360.65283
[98] Antonietti, P. F.; Sarti, M.; Verani, M.; Zikatanov, L. T., A uniform additive Schwarz preconditioner for high-order discontinuous Galerkin approximations of elliptic problems, J. Sci. Comput., 70, 2, 608-630 (2017) · Zbl 1381.65091
[99] Gee, M. W.; Siefert, C. M.; Hu, J. J.; Tuminaro, R. S.; Sala, M. G., ML 5.0 smoothed aggregation user’s guide (2006), Sandia National Laboratories, Tech. Rep., Technical Report SAND2006-2649
[100] Offermans, N.; Peplinski, A.; Marin, O.; Fischer, P. F.; Schlatter, P., Towards adaptive mesh refinement for the spectral element solver Nek5000, (Salvetti, M. V.; Armenio, V.; Fröhlich, J.; Geurts, B. J.; Kuerten, H., Direct and Large-Eddy Simulation XI (2019), Springer International Publishing: Springer International Publishing Cham), 9-15
[101] Ichimura, T.; Fujita, K.; Quinay, P. E.B.; Maddegedara, L.; Hori, M.; Tanaka, S.; Shizawa, Y.; Kobayashi, H.; Minami, K., Implicit nonlinear wave simulation with 1.08T DOF and 0.270T unstructured finite elements to enhance comprehensive earthquake simulation, (SC ’15: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (2015)), 1-12
[102] Gmeiner, B.; Rüde, U.; Stengel, H.; Waluga, C.; Wohlmuth, B., Performance and scalability of hierarchical hybrid multigrid solvers for Stokes systems, SIAM J. Sci. Comput., 37, 2, C143-C168 (2015) · Zbl 1320.65188
[103] Gropp, W. D.; Kaushik, D. K.; Keyes, D. E.; Smith, B. F., Performance modeling and tuning of an unstructured mesh CFD application, (SC ’00: Proceedings of the 2000 ACM/IEEE Conference on Supercomputing (2000)), 34
[104] Ibeid, H.; Olson, L.; Gropp, W., FFT, FMM, and multigrid on the road to exascale: performance challenges and opportunities, J. Parallel Distrib. Comput., 136, 63-74 (2020)
[105] Offermans, N.; Marin, O.; Schanen, M.; Gong, J.; Fischer, P.; Schlatter, P.; Obabko, A.; Peplinski, A.; Hutchinson, M.; Merzari, E., On the strong scaling of the spectral element solver Nek5000 on petascale systems, (Proceedings of the Exascale Applications and Software Conference 2016. Proceedings of the Exascale Applications and Software Conference 2016, EASC ’16 (2016), ACM: ACM New York, NY, USA), Article 5 pp.
[106] Malinauskas, R. A.; Hariharan, P.; Day, S. W.; Herbertson, L. H.; Buesen, M.; Steinseifer, U.; Aycock, K. I.; Good, B. C.; Deutsch, S.; Manning, K. B., FDA benchmark medical device flow models for CFD validation, ASAIO J., 63, 2, 150-160 (2017)
[107] Roth, C. J.; Förster, K. M.; Hilgendorff, A.; Ertl-Wagner, B.; Wall, W. A.; Flemmer, A. W., Gas exchange mechanisms in preterm infants on HFOV-a computational approach, Sci. Rep., 8, 1, Article 13008 pp. (2018)
[108] Fehn, N.; Wall, W. A.; Kronbichler, M., Modern discontinuous Galerkin methods for the simulation of transitional and turbulent flows in biomedical engineering: a comprehensive LES study of the FDA benchmark nozzle model, Int. J. Numer. Methods Biomed. Eng., 35, 12, Article e3228 pp. (2019)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.