Uncertainty in finite-time Lyapunov exponent computations. (English) Zbl 1450.37077

Summary: The Finite-Time Lyapunov Exponent (FTLE) is a well-established numerical tool for assessing stretching rates of initial parcels of fluid, which are advected according to a given time-varying velocity field (which is often available only as data). When viewed as a field over initial conditions, the FTLE’s spatial structure is often used to infer the nonhomogeneous transport. Given the measurement and resolution errors inevitably present in the unsteady velocity data, the computed FTLE field should in reality be treated only as an approximation. A method which, for the first time, is able for attribute spatially-varying errors to the FTLE field is developed. The formulation is, however, confined to two-dimensional flows. Knowledge of the errors prevent reaching erroneous conclusions based only on the FTLE field. Moreover, it is established that increasing the spatial resolution does not improve the accuracy of the FTLE field in the presence of velocity uncertainties, and indeed has the opposite effect. Stochastic simulations are used to validate and exemplify these results, and demonstrate the computability of the error field.


37M25 Computational methods for ergodic theory (approximation of invariant measures, computation of Lyapunov exponents, entropy, etc.)
68U01 General topics in computing methodologies


Full Text: DOI


[1] M. R. Allshouse and T. Peacock, Refining finite-time Lyapunov exponent ridges and the challenges of classifying them, Chaos, 25 (2015), 14pp. · Zbl 1374.37117
[2] L. Arnold, Random Dynamical Systems, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. · Zbl 0906.34001
[3] H. Babaee, M. Farazmand, G. Haller and T. P. Sapsis, Reduced-order description of transient instabilities and computation of finite-time Lyapunov exponents, Chaos, 27 (2017), 12pp. · Zbl 1390.37137
[4] M. Badas; F. Domenichini; G. Querzoli, Quantification of the blood mixing in the left ventricle using finite time Lyapunov exponents, Meccanica, 52, 529-544 (2017)
[5] S. Balasuriya, Barriers and Transport in Unsteady Flows. A Melnikov Approach, Mathematical Modeling and Computation, 21, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2016. · Zbl 1354.76004
[6] S. Balasuriya, A numerical scheme for computing stable and unstable manifolds in nonautonomous flows, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 26 (2016), 22pp. · Zbl 1357.37044
[7] S. Balasuriya, Stochastic sensitivity: A computable Lagrangian uncertainty measure for unsteady flows, SIAM Review, in press.
[8] S. Balasuriya and G. Gottwald, Estimating stable and unstable sets and their role as transport barriers in stochastic flows, Phys. Rev. E, 98 (2018).
[9] S. Balasuriya; R. Kalampattel; N. T. Ouellette, Hyperbolic neighborhoods as organizers of finite-time exponential stretching, J. Fluid Mech., 807, 509-545 (2016) · Zbl 1383.37025
[10] S. Balasuriya; N. T. Ouellette; I. I. Rypina, Generalized Lagrangian coherent structures, Phys. D, 372, 31-51 (2018) · Zbl 1391.76002
[11] A. Berger; T. S. Doan; S. Siegmund, A definition of spectrum for differential equations on finite time, J. Differential Equations, 246, 1098-1118 (2009) · Zbl 1169.34040
[12] F. Beron-Vera, Mixing by low- and high-resolution surface geostrophic currents, J. Geophys. Res. Oceans, 115 (2010).
[13] F. Beron-Vera; M. Olascoaga; M. Brown; H.. Koçak, Zonal jets as meridional transport barriers in the subtropical and polar lower stratosphere, J. Atmos. Sci., 69, 753-767 (2012)
[14] A. BozorgMagham; S. Ross, Atmospheric Lagrangian coherent structures considering unresolved turbulence and forecast uncertainty, Commun. Nonlin. Sci. Numer. Simul., 22, 964-979 (2015)
[15] A. E. BozorgMagham; S. D. Ross; D. G. Schmale, Real-time prediction of atmospheric Lagrangian coherent structures based on forecast data: An application and error analysis, Phys. D, 258, 47-60 (2013)
[16] S. L. Brunton and C. W. Rowley, Fast computation of finite-time Lyapunov exponent fields for unsteady flows, Chaos, 20 (2010), 12pp. · Zbl 1311.76102
[17] T. F. Dauche, C. Ates, T. Rapp, M. C. Keller and G. Chaussonnet, et al., Analyzing the interaction of vortex and gas-liquid interface dynamics in fuel spray nozzles by means of Lagrangian-coherent structures (2D), Energies, 12 (2019).
[18] F. d’Ovidio, V. Fernández, E. Hernández-Garcia and C. López, Mixing structures in the Mediterranean Sea from finite-size Lyapunov exponents, Geophys. Res. Lett., 31 (2004).
[19] J. Finn and S. V. Apte, Integrated computation of finite-time Lyapunov exponent fields during direct numerical simulation of unsteady flows, Chaos, 23 (2013), 14pp.
[20] A. Fortin; T. Briffard; A. Garon, A more efficient anisotropic mesh adaptation for the computation of Lagrangian coherent structures, J. Comp. Phys., 285, 100-110 (2015) · Zbl 1352.65323
[21] D. Garaboa-Paz; J. Eiras-Barca; V. Perez-Munuzuri, Climatology of Lyapunov exponents: The link between atmospheric rivers and large-scale mixing variability, Earth System Dyn., 8, 865-873 (2017)
[22] H. Guo; W. He; T. Peterka; H.-W. Shen; S. Collis; J. Helmus, Finite-time Lyapunov exponents and Lagrangian coherent structures in uncertain unsteady flows, IEEE Trans. Visual. Comp. Graphics, 22, 1672-1682 (2016)
[23] A. Hadjighasem, M. Farazmand, D. Blazevski, G. Froyland and G. Haller, A critical comparison of Lagrangian methods for coherent structure detection, Chaos, 27 (2017), 25pp. · Zbl 1465.76096
[24] G. Haller, A variational theory of hyperbolic Lagrangian coherent structures, Phys. D, 240, 574-598 (2011) · Zbl 1214.37056
[25] G. Haller, Lagrangian coherent structures, in Annual Review of Fluid Mechanics, Annu. Rev. Fluid Mech., 47, Annual Reviews, Palo Alto, CA, 2015,137-162.
[26] G. Haller and T. Sapsis, Lagrangian coherent structures and the smallest finite-time Lyapunov exponent, Chaos, 21 (2011), 7pp. · Zbl 1317.37106
[27] G.-S. He; C. Pan; L.-H. Feng; Q. Gao; J.-J. Wang, Evolution of Lagrangian coherent structures in a cylinder-wake disturbed flat plate boundary layer, J. Fluid Mech., 792, 274-306 (2016) · Zbl 1381.76089
[28] I. Hernández-Carrasco; C. López; E. Hernández-Garcia; A. Turiel, How reliable are finite-size Lyapunov exponents for the assessment of ocean dynamics?, Ocean Model., 36, 208-218 (2011)
[29] P. Holmes; D. Whitley, On the attracting set for Duffing’s equation, Phys. D, 7, 111-123 (1983)
[30] Z. Y. Hu; M. Zhou, Lagrangian analysis of surface transport patterns in the northern south China sea, Deep Sea Res. II: Topical Stud. Oceanography, 167, 4-13 (2019)
[31] F. Huhn; A. von Kameke; S. Allen-Perkins; P. Montero; A. Venancio; V. Pérez-Muñuzuri, Horizontal Lagrangian transport in a tidal-driven estuary-Transport barriers attached to prominent coastal boundaries, Continental Shelf Res., 39-40, 1-13 (2012)
[32] F. Huhn, A. von Kameke, V. Pérez-Muñuzuri, M. J. Olascoaga and F. J. Beron-Vera, The impact of advective transport by the South Indian Ocean Countercurrent on the Madagascar plankton bloom, Geophys. Res. Lett., 39 (2012).
[33] H. Kafiabad; P. Chan; G. Haller, Lagrangian detection of wind shear for landing aircraft, J. Atmos. Ocean. Tech., 30, 2808-2819 (2013)
[34] E. Kai; V. Rossi; J. Sudre; H. Weirmerskirch; C. Lopez; E. Hernandez-Garcia; F. Marsac; V. Garcon, Top marine predators track Lagrangian coherent structures, Proc. Nat. Acad. Sci., 106, 8245-8250 (2009)
[35] A. Kameke; S. Kastens; S. Rüttinger; S. Herres-Pawlis; M. Schlüter, How coherent structures dominate the residence time in a bubble wake: An experimental example, Chem. Engrg. Sci., 207, 317-326 (2019)
[36] D. Karrasch and G. Haller, Do finite-size Lyapunov exponents detect coherent structures?, Chaos, 23 (2013), 11pp. · Zbl 1331.37023
[37] S. Keating; K. Smith; P. Kramer, Diagnosing lateral mixing in the upper ocean with virtual tracers: Spatial and temporal resolution dependence, J. Phys. Oceanography, 41, 1512-1534 (2011)
[38] P. E. Kloeden, E. Platen and H. Schurz, Numerical Solution of SDE Through Computer Experiments, Universitext, Springer-Verlag, Berlin, 1994. · Zbl 0789.65100
[39] T.-Y. Koh; B. Legras, Hyperbolic lines and the stratospheric polar vortex, Chaos, 12, 382-394 (2002) · Zbl 1080.86002
[40] A. Kumar; S. Dwivedi; A. Pandey, Quantifying predictability of sea ice around the Indian Antarctic stations using coupled ocean sea ice model with shelf ice, Polar Sci., 18, 83-93 (2018)
[41] G. Lacorata; R. Corrado; F. Falcini; R. Santoleri, FSLE analysis and validation of Lagrangian simulations based on satellite-derived GlobCurrent velocity data, Remote Sensing Environ., 221, 136-143 (2019)
[42] F. Lekien and S. D. Ross, The computation of finite-time Lyapunov exponents on unstructured meshes and for non-Euclidean manifolds, Chaos, 20 (2010), 20pp. · Zbl 1311.76109
[43] S. Leung, An Eulerian approach for computing the finite time Lyapunov exponent, J. Comput. Phys., 230, 3500-3524 (2011) · Zbl 1316.65113
[44] D. Lipinski and K. Mohseni, A ridge tracking algorithm and error estimate for efficient computation of Lagrangian coherent structures, Chaos, 20 (2010), 9pp. · Zbl 1311.76034
[45] K. May-Newman, V. Vu and B. Herold, Modeling the link between left ventricular flow and thromboembolic risk using Lagrangian coherent structures, Fluids, 1 (2016).
[46] P. Miron, J. Vétel and A. Garon, On the use of the finite-time Lyapunov exponent to reveal complex flow physics in the wake of a mechanical valve, Exp. Fluids, 55 (2014).
[47] D. A. Nelson; G. B. Jacobs, DG-FTLE: Lagrangian coherent structures with high-order discontinuous Galerkin methods, J. Comput. Phys., 295, 65-86 (2015) · Zbl 1349.76244
[48] Y.-K. Ng; S. Leung, Estimating the finite-time Lyapunov exponent from sparse Lagrangian trajectories, Commun. Comput. Phys., 26, 1143-1177 (2019)
[49] G. Norgard; P.-T. Bremmer, Second derivative ridges are straight lines and the implications for computing Lagrangian Coherent Structures, Phys. D, 241, 1475-1476 (2012) · Zbl 1254.76091
[50] B. Øksendahl, Stochastic Differential Equations, Universitext, Springer-Verlag, Berlin, 1995.
[51] A. B. Olcay, T. S. Pottebaum and P. S. Krueger, Sensitivity of Lagrangian coherent structure identification to flow field resolution and random errors, Chaos, 20 (2010), 10pp. · Zbl 1311.76035
[52] T. Peacock and J. Dabiri, Introduction to focus issue: Lagrangian coherent structures, Chaos, 20 (2010).
[53] A. Poje; A. Haza; T. Özgökmen; M. Magaldi; Z. Garrafo, Resolution dependent relative dispersion statistics in a hierarchy of ocean models, Ocean Model., 31, 36-50 (2010)
[54] M. Rockwood, T. Loiselle and M. Green, Practical concerns of implementing a finite-time Lyapunov exponent analysis with under-resolved data, Exp. Fluids, 60 (2019).
[55] M. Rudko; I. Kamenkovich; D. Nolan, Stability of baroclinic vortices on the \(\begin{document} \beta \end{document}\) plane and implications for transport, J. Phys. Oceanography, 46, 3245-3262 (2016)
[56] R. Samelson, Lagrangian motion, coherent structures, and lines of persistent material strain, Annu. Rev. Mar. Sci., 5, 137-163 (2013)
[57] R. Sampath, M. Mathur and S. Chakravarthy, Lagrangian coherent structures during combustion instability in a premixed-flame backward-step combustor, Phys. Rev. E, 94 (2016).
[58] B. Sandstede; S. Balasuriya; C. K. R. T. Jones; P. Miller, Melnikov theory for finite-time vector fields, Nonlinearity, 13, 1357-1377 (2000) · Zbl 0962.37007
[59] K. Scales; E. Hazen; M. Jacox; F. Castruccio; S. Bograd, Fisheries bycatch risk to marine megafauna is intensified in Lagrangian coherent structures, Proc. Nat. Acad. Sci., 115, 7362-7367 (2018)
[60] B. Schindler, R. Peikert, R. Fuchs and H. Theisl, Ridge concepts for the visualization of Lagrangian coherent structures, in Topological Methods in Data Analysis and Visualization II, Math. Vis., Springer, Heidelberg, 2012,221-236. · Zbl 1426.76590
[61] C. Senatore; S. Ross, Detection and characterization of transport barriers in complex flows via ridge extraction of the finite time Lyapunov exponent field, Internat. J. Numer. Methods Engrg., 86, 1163-1174 (2011) · Zbl 1235.76044
[62] S. Shadden, Lagrangian coherent structures, in Transport and Mixing in Laminar Flows: From Microfluidics to Oceanic Currents, Wiley, 2011. · Zbl 1356.76334
[63] S. C. Shadden; F. Lekien; J. E. Marsden, Definition and properties of Lagrangian coherent structures from Lyapunov exponents in two-dimensional aperiodic flows, Phys. D, 212, 271-304 (2005) · Zbl 1161.76487
[64] E. Shuckburgh, Mapping unstable manifolds using drifters/floats in a Southern Ocean field campaign, in Numerical Analysis and Applied Mathematics, AIP Conference Proceedings, 1479, AIP, 2012,650-653.
[65] K. G. D. Sulalitha Priyankara, S. Balasuriya and E. Bollt, Quantifying the role of folding in nonautonomous flows: The unsteady double-gyre, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 27 (2017), 19pp. · Zbl 1381.37034
[66] P. Tallagragada; S. D. Ross, A set oriented definition of finite-time Lyapunov exponents and coherent sets, Commun. Nonlinear Sci. Numer. Simul., 18, 1106-1126 (2013) · Zbl 1345.37027
[67] W. Tang; P. Chan; G. Haller, Lagrangian coherent structure analysis of terminal winds detected by LIDAR. Part 1: Turbulent structures, J. Appl. Meteor. Climatol., 50, 325-338 (2011)
[68] J.-L. Thiffeault; A. H. Boozer, Geometrical constraints on finite-time Lyapunov exponents in two and three dimensions, Chaos, 11, 16-28 (2001) · Zbl 0969.37014
[69] G. You; S. Leung, An improved Eulerian approach for the finite time Lyapunov exponent, J. Sci. Comput., 76, 1407-1435 (2018) · Zbl 1417.65156
[70] M. Zhang; H. Chen; Q. Wu; X. Li; L. Xiang; G. Wang, Experimental and numerical investigation of cavitating vortical patterns around a Tulin hydrofoil, Ocean Engrg., 173, 298-307 (2019)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.