zbMATH — the first resource for mathematics

Torus graphs for multivariate phase coupling analysis. (English) Zbl 1446.62168
Summary: Angular measurements are often modeled as circular random variables, where there are natural circular analogues of moments, including correlation. Because a product of circles is a torus, a \(d\)-dimensional vector of circular random variables lies on a \(d\)-dimensional torus. For such vectors we present here a class of graphical models, which we call torus graphs, based on the full exponential family with pairwise interactions. The topological distinction between a torus and Euclidean space has several important consequences. Our development was motivated by the problem of identifying phase coupling among oscillatory signals recorded from multiple electrodes in the brain: oscillatory phases across electrodes might tend to advance or recede together, indicating coordination across brain areas. The data analyzed here consisted of 24 phase angles measured repeatedly across 840 experimental trials (replications) during a memory task, where the electrodes were in 4 distinct brain regions, all known to be active while memories are being stored or retrieved. In realistic numerical simulations, we found that a standard pairwise assessment, known as phase locking value, is unable to describe multivariate phase interactions, but that torus graphs can accurately identify conditional associations. Torus graphs generalize several more restrictive approaches that have appeared in various scientific literatures, and produced intuitive results in the data we analyzed. Torus graphs thus unify multivariate analysis of circular data and present fertile territory for future research.
62H25 Factor analysis and principal components; correspondence analysis
62H22 Probabilistic graphical models
62R30 Statistics on manifolds
62P10 Applications of statistics to biology and medical sciences; meta analysis
05C90 Applications of graph theory
Full Text: DOI Euclid
[1] Aydore, S., Pantazis, D. and Leahy, R. M. (2013). A note on the phase locking value and its properties. NeuroImage 74 231-244.
[2] Brincat, S. L. and Miller, E. K. (2015). Frequency-specific hippocampal-prefrontal interactions during associative learning. Nat. Neurosci. 18 576-581.
[3] Brincat, S. L. and Miller, E. K. (2016). Prefrontal cortex networks shift from external to internal modes during learning. J. Neurosci. 36 9739-9754.
[4] Brown, L. D. (1986). Fundamentals of Statistical Exponential Families with Applications in Statistical Decision Theory. Institute of Mathematical Statistics Lecture Notes—Monograph Series 9. IMS, Hayward, CA.
[5] Buzsáki, G. and Draguhn, A. (2004). Neuronal oscillations in cortical networks. Science 304 1926-1929.
[6] Cadieu, C. F. and Koepsell, K. (2010). Phase coupling estimation from multivariate phase statistics. Neural Comput. 22 3107-3126. · Zbl 1214.82074
[7] Chen, S., Witten, D. M. and Shojaie, A. (2015). Selection and estimation for mixed graphical models. Biometrika 102 47-64. · Zbl 1345.62081
[8] Ching, S., Cimenser, A., Purdon, P. L., Brown, E. N. and Kopell, N. J. (2010). Thalamocortical model for a propofol-induced \(\alpha \)-rhythm associated with loss of consciousness. Proc. Natl. Acad. Sci. USA 107 22665-22670.
[9] Dawid, A. P. and Musio, M. (2014). Theory and applications of proper scoring rules. Metron 72 169-183. · Zbl 1316.62013
[10] Fell, J. and Axmacher, N. (2011). The role of phase synchronization in memory processes. Nat. Rev. Neurosci. 12 105-118.
[11] Fisher, N. I. (1993). Statistical Analysis of Circular Data. Cambridge Univ. Press, Cambridge. · Zbl 0788.62047
[12] Forbes, P. G. M. and Lauritzen, S. (2015). Linear estimating equations for exponential families with application to Gaussian linear concentration models. Linear Algebra Appl. 473 261-283. · Zbl 1312.62068
[13] Forbes, C., Evans, M., Hastings, N. and Peacock, B. (2011). Statistical Distributions. Wiley, Hoboken, NJ.
[14] Hyvärinen, A. (2005). Estimation of non-normalized statistical models by score matching. J. Mach. Learn. Res. 6 695-709. · Zbl 1222.62051
[15] Hyvärinen, A. (2007). Some extensions of score matching. Comput. Statist. Data Anal. 51 2499-2512. · Zbl 1161.62326
[16] Kass, R. E., Eden, U. T. and Brown, E. N. (2014). Analysis of Neural Data. Springer Series in Statistics. Springer, New York. · Zbl 1404.62002
[17] Klein, N., Orellana, J., Brincat, S., Miller, E. K. and Kass, R. E. (2020a). Supplement A. Supplement to “Torus graphs for multivariate phase coupling analysis.” https://doi.org/10.1214/19-AOAS1300SUPPA.
[18] Klein, N., Orellana, J., Brincat, S., Miller, E. K. and Kass, R. E. (2020b). Supplement B. Supplement code and data to “Torus graphs for multivariate phase coupling analysis.” https://doi.org/10.1214/19-AOAS1300SUPPB.
[19] Kurz, G. and Hanebeck, U. D. (2015). Toroidal information fusion based on the bivariate von Mises distribution. In IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems MFI. IEEE.
[20] Lachaux, J. P., Rodriguez, E., Martinerie, J. and Varela, F. J. (1999). Measuring phase synchrony in brain signals. Hum. Brain Mapp. 8 194-208.
[21] Lin, L., Drton, M. and Shojaie, A. (2016). Estimation of high-dimensional graphical models using regularized score matching. Electron. J. Stat. 10 806-854. · Zbl 1336.62130
[22] Mardia, K. V. and Jupp, P. E. (2000). Directional Statistics. Wiley Series in Probability and Statistics. Wiley, Chichester. · Zbl 0935.62065
[23] Mardia, K. V., Kent, J. T. and Laha, A. K. (2016). Score matching estimators for directional distributions. Preprint. Available at arXiv:1604.08470.
[24] Mardia, K. V. and Patrangenaru, V. (2005). Directions and projective shapes. Ann. Statist. 33 1666-1699. · Zbl 1078.62068
[25] Mardia, K. V., Taylor, C. C. and Subramaniam, G. K. (2007). Protein bioinformatics and mixtures of bivariate von Mises distributions for angular data. Biometrics 63 505-512. · Zbl 1136.62082
[26] Meinshausen, N. and Bühlmann, P. (2010). Stability selection. J. R. Stat. Soc. Ser. B. Stat. Methodol. 72 417-473. · Zbl 1411.62142
[27] Rana, K. D., Vaina, L. M. and Hämäläinen, M. S. (2013). A fast statistical significance test for baseline correction and comparative analysis in phase locking. Front Neuroinform 7 3.
[28] Rodriguez-Lujan, L., Larrañaga, P. and Bielza, C. (2017). Frobenius norm regularization for the multivariate von Mises distribution. Int. J. Intell. Syst. 32 153-176.
[29] Sherman, M. A., Lee, S., Law, R., Haegens, S., Thorn, C. A., Hämäläinen, M. S., Moore, C. I. and Jones, S. R. (2016). Neural mechanisms of transient neocortical beta rhythms: Converging evidence from humans, computational modeling, monkeys, and mice. Proc. Natl. Acad. Sci. USA 113 E4885-E4894.
[30] Steinmetz, N. A., Koch, C., Harris, K. D. and Carandini, M. (2018). Challenges and opportunities for large-scale electrophysiology with neuropixels probes. Curr. Opin. Neurobiol. 50 92-100.
[31] Tort, A. B., Komorowski, R., Eichenbaum, H. and Kopell, N. (2010). Measuring phase-amplitude coupling between neuronal oscillations of different frequencies. J. Neurophysiol. 104 1195-1210.
[32] Wainwright, M. J., Jordan, M. I. et al. (2008). Graphical models, exponential families, and variational inference. Found. Trends Mach. Learn. 1 1-305. · Zbl 1193.62107
[33] Yang, E., Ravikumar, P., Allen, G. I. and Liu, Z. (2015). Graphical models via univariate exponential family distributions. J. Mach. Learn. Res. 16 3813-3847. · Zbl 1351.62111
[34] Yu, S., Drton, M. and Shojaie, A. (2019). Graphical models for non-negative data using generalized score matching. Preprint. Available at arXiv:1802.06340. · Zbl 07064056
[35] Yu, M., Kolar, M. and Gupta, V. (2016). Statistical inference for pairwise graphical models using score matching. In Advances in Neural Information Processing Systems 2829-2837.
[36] Zemel, R.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.