A random effects stochastic block model for joint community detection in multiple networks with applications to neuroimaging.

*(English)*Zbl 1446.62287Summary: To analyze data from multisubject experiments in neuroimaging studies, we develop a modeling framework for joint community detection in a group of related networks that can be considered as a sample from a population of networks. The proposed random effects stochastic block model facilitates the study of group differences and subject-specific variations in the community structure. The model proposes a putative mean community structure, which is representative of the group or the population under consideration but is not the community structure of any individual component network. Instead, the community memberships of nodes vary in each component network with a transition matrix, thus modeling the variation in community structure across a group of subjects. To estimate the quantities of interest, we propose two methods: a variational EM algorithm and a model-free “two-step” method called Co-OSNTF which is based on nonnegative matrix factorization. We also develop a resampling-based hypothesis test for differences between community structure in two populations both at the whole network level and node level. The methodology is applied to the COBRE dataset, a publicly available fMRI dataset from multisubject experiments involving schizophrenia patients. Our methods reveal an overall putative community structure representative of the group as well as subject-specific variations within each of the two groups, healthy controls and schizophrenia patients. The model has good predictive ability for predicting community structure in subjects from the same population but outside the training sample. Using our network level hypothesis tests, we are able to ascertain statistically significant difference in community structure between the two groups, while our node level tests help determine the nodes that are driving the difference.

##### MSC:

62P10 | Applications of statistics to biology and medical sciences; meta analysis |

62H35 | Image analysis in multivariate analysis |

15A23 | Factorization of matrices |

##### Keywords:

community detection; neuroimaging; nonnegative matrix factorization; population of networks; random effects stochastic block model
PDF
BibTeX
XML
Cite

\textit{S. Paul} and \textit{Y. Chen}, Ann. Appl. Stat. 14, No. 2, 993--1029 (2020; Zbl 1446.62287)

**OpenURL**

##### References:

[1] | Alexander-Bloch, A. F., Gogtay, N., Meunier, D., Birn, R., Clasen, L., Lalonde, F., Lenroot, R., Giedd, J. and Bullmore, E. T. (2010). Disrupted modularity and local connectivity of brain functional networks in childhood-onset schizophrenia. Front. Syst. Neurosci. 4 147. |

[2] | Alexander-Bloch, A., Lambiotte, R., Roberts, B., Giedd, J., Gogtay, N. and Bullmore, E. (2012). The discovery of population differences in network community structure: New methods and applications to brain functional networks in schizophrenia. NeuroImage 59 3889-3900. |

[3] | Bacco, C. D., Power, E. A., Larremore, D. B. and Moore, C. (2017). Community detection, link prediction, and layer interdependence in multilayer networks. Phys. Rev. E 95 042317. |

[4] | Barbillon, P., Donnet, S., Lazega, E. and Bar-Hen, A. (2017). Stochastic block models for multiplex networks: An application to a multilevel network of researchers. J. Roy. Statist. Soc. Ser. A 180 295-314. |

[5] | Bassett, D. S., Wymbs, N. F., Porter, M. A., Mucha, P. J., Carlson, J. M. and Grafton, S. T. (2011). Dynamic reconfiguration of human brain networks during learning. Proc. Natl. Acad. Sci. USA 108 7641-7646. |

[6] | Bassett, D. S., Nelson, B. G., Mueller, B. A., Camchong, J. and Lim, K. O. (2012). Altered resting state complexity in schizophrenia. NeuroImage 59 2196-2207. |

[7] | Bazzi, M., Porter, M. A., Williams, S., McDonald, M., Fenn, D. J. and Howison, S. D. (2016). Community detection in temporal multilayer networks, with an application to correlation networks. Multiscale Model. Simul. 14 1-41. · Zbl 1328.90151 |

[8] | Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. Roy. Statist. Soc. Ser. B 57 289-300. · Zbl 0809.62014 |

[9] | Betzel, R. F., Bertolero, M. A., Gordon, E. M., Gratton, C., Dosenbach, N. U. F. and Bassett, D. S. (2019). The community structure of functional brain networks exhibits scale-specific patterns of inter- and intra-subject variability. NeuroImage 202 115990. |

[10] | Bickel, P., Choi, D., Chang, X. and Zhang, H. (2013). Asymptotic normality of maximum likelihood and its variational approximation for stochastic blockmodels. Ann. Statist. 41 1922-1943. · Zbl 1292.62042 |

[11] | Blondel, V. D., Guillaume, J.-L., Lambiotte, R. and Lefebvre, E. (2008). Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008 P10008. · Zbl 1459.91130 |

[12] | Boccaletti, S., Bianconi, G., Criado, R., del Genio, C. I., Gómez-Gardeñes, J., Romance, M., Sendiña-Nadal, I., Wang, Z. and Zanin, M. (2014). The structure and dynamics of multilayer networks. Phys. Rep. 544 1-122. |

[13] | Braun, U., Schäfer, A., Walter, H., Erk, S., Romanczuk-Seiferth, N., Haddad, L., Schweiger, J. I., Grimm, O., Heinz, A. et al. (2015). Dynamic reconfiguration of frontal brain networks during executive cognition in humans. Proc. Natl. Acad. Sci. USA 112 11678-11683. |

[14] | Brownlees, C. T., Gudmundsson, G. and Lugosi, G. (2017). Community detection in partial correlation network models. Available at SSRN 2776505. |

[15] | Bullmore, E. and Sporns, O. (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems. Nat. Rev., Neurosci. 10 186-198. |

[16] | Celisse, A., Daudin, J.-J. and Pierre, L. (2012). Consistency of maximum-likelihood and variational estimators in the stochastic block model. Electron. J. Stat. 6 1847-1899. · Zbl 1295.62028 |

[17] | Chen, S., Kang, J., Xing, Y. and Wang, G. (2015). A parsimonious statistical method to detect groupwise differentially expressed functional connectivity networks. Hum. Brain Mapp. 36 5196-5206. |

[18] | Daudin, J.-J., Picard, F. and Robin, S. (2008). A mixture model for random graphs. Stat. Comput. 18 173-183. |

[19] | Ding, C., Li, T., Peng, W. and Park, H. (2006). Orthogonal nonnegative matrix t-factorizations for clustering. In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 126-135. ACM, New York. |

[20] | Dong, X., Frossard, P., Vandergheynst, P. and Nefedov, N. (2014). Clustering on multi-layer graphs via subspace analysis on Grassmann manifolds. IEEE Trans. Signal Process. 62 905-918. · Zbl 1394.94973 |

[21] | Edelman, A., Arias, T. A. and Smith, S. T. (1999). The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl. 20 303-353. · Zbl 0928.65050 |

[22] | Fornito, A., Zalesky, A. and Breakspear, M. (2013). Graph analysis of the human connectome: Promise, progress, and pitfalls. NeuroImage 80 426-444. |

[23] | Fornito, A., Zalesky, A. and Breakspear, M. (2015). The connectomics of brain disorders. Nat. Rev., Neurosci. 16 159-172. |

[24] | Fujita, A., Takahashi, D. Y., Patriota, A. G. and Sato, J. R. (2014). A non-parametric statistical test to compare clusters with applications in functional magnetic resonance imaging data. Stat. Med. 33 4949-4962. |

[25] | GadElkarim, J. J., Schonfeld, D., Ajilore, O., Zhan, L., Zhang, A. F., Feusner, J. D., Thompson, P. M., Simon, T. J., Kumar, A. et al. (2012). A framework for quantifying node-level community structure group differences in brain connectivity networks. In International Conference on Medical Image Computing and Computer-Assisted Intervention 196-203. Springer, Berlin. |

[26] | Ginestet, C. E., Fournel, A. P. and Simmons, A. (2014). Statistical network analysis for functional MRI: Summary networks and group comparisons. Front. Comput. Neurosci. 8 51. |

[27] | Ginestet, C. E., Li, J., Balachandran, P., Rosenberg, S. and Kolaczyk, E. D. (2017). Hypothesis testing for network data in functional neuroimaging. Ann. Appl. Stat. 11 725-750. · Zbl 1391.62217 |

[28] | Glerean, E., Pan, R. K., Salmi, J., Kujala, R., Lahnakoski, J. M., Roine, U., Nummenmaa, L., Leppämäki, S., Nieminen-von Wendt, T. et al. (2016). Reorganization of functionally connected brain subnetworks in high-functioning autism. Hum. Brain Mapp. 37 1066-1079. |

[29] | Han, Q., Xu, K. S. and Airoldi, E. M. (2015). Consistent estimation of dynamic and multi-layer block models. In Proceedings of the 32nd International Conference on Machine Learning 1511-1520. |

[30] | He, Y., Wang, J., Wang, L., Chen, Z. J., Yan, C., Yang, H., Tang, H., Zhu, C., Gong, Q. et al. (2009). Uncovering intrinsic modular organization of spontaneous brain activity in humans. PLoS ONE 4 e5226. |

[31] | Hutchison, R. M., Womelsdorf, T., Allen, E. A., Bandettini, P. A., Calhoun, V. D., Corbetta, M., Della Penna, S., Duyn, J. H., Glover, G. H. et al. (2013). Dynamic functional connectivity: Promise, issues, and interpretations. NeuroImage 80 360-378. |

[32] | Jones, D. T., Vemuri, P., Murphy, M. C., Gunter, J. L., Senjem, M. L., Machulda, M. M., Przybelski, S. A., Gregg, B. E., Kantarci, K. et al. (2012). Non-stationarity in the “resting brain’s” modular architecture. PLoS ONE 7 e39731. |

[33] | Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J. P., Moreno, Y. and Porter, M. A. (2014). Multilayer networks. J. Complex Netw. 2 203-271. |

[34] | Kuhn, H. W. (1955). The Hungarian method for the assignment problem. Nav. Res. Logist. Q. 2 83-97. |

[35] | Kujala, R., Glerean, E., Pan, R. K., Jääskeläinen, I. P., Sams, M. and Saramäki, J. (2016). Graph coarse-graining reveals differences in the module-level structure of functional brain networks. Eur. J. Neurosci. 44 2673-2684. |

[36] | Kumar, A., Rai, P. and Daume, H. (2011). Co-regularized multi-view spectral clustering. In Advances in Neural Information Processing Systems 1413-1421. |

[37] | Lee, D. D. and Seung, H. S. (2001). Algorithms for non-negative matrix factorization. In Advances in Neural Information Processing Systems 556-562. |

[38] | Lei, J. and Rinaldo, A. (2015). Consistency of spectral clustering in stochastic block models. Ann. Statist. 43 215-237. · Zbl 1308.62041 |

[39] | Liu, Y., Liang, M., Zhou, Y., He, Y., Hao, Y., Song, M., Yu, C., Liu, H., Liu, Z. et al. (2008). Disrupted small-world networks in schizophrenia. Brain 131 945-961. |

[40] | Liu, J., Wang, C., Gao, J. and Han, J. (2013). Multi-view clustering via joint nonnegative matrix factorization. In Proc. of SDM 13 252-260. SIAM, Philadelphia. |

[41] | Lynall, M.-E., Bassett, D. S., Kerwin, R., McKenna, P. J., Kitzbichler, M., Muller, U. and Bullmore, E. (2010). Functional connectivity and brain networks in schizophrenia. J. Neurosci. 30 9477-9487. |

[42] | Mankad, S. and Michailidis, G. (2013). Structural and functional discovery in dynamic networks with non-negative matrix factorization. Phys. Rev. E 88 042812. · Zbl 1397.62586 |

[43] | Matias, C. and Miele, V. (2017). Statistical clustering of temporal networks through a dynamic stochastic block model. J. R. Stat. Soc. Ser. B. Stat. Methodol. 79 1119-1141. · Zbl 1373.62312 |

[44] | Meunier, D., Lambiotte, R. and Bullmore, E. T. (2010). Modular and hierarchically modular organization of brain networks. Front. Neurosci. 4 200. |

[45] | Mirzal, A. (2014). A convergent algorithm for orthogonal nonnegative matrix factorization. J. Comput. Appl. Math. 260 149-166. · Zbl 1293.65066 |

[46] | Moussa, M. N., Steen, M. R., Laurienti, P. J. and Hayasaka, S. (2012). Consistency of network modules in resting-state FMRI connectome data. PLoS ONE 7 e44428. |

[47] | Mucha, P. J., Richardson, T., Macon, K., Porter, M. A. and Onnela, J.-P. (2010). Community structure in time-dependent, multiscale, and multiplex networks. Science 328 876-878. · Zbl 1226.91056 |

[48] | Narayan, M. and Allen, G. I. (2016). Mixed effects models for resampled network statistics improves statistical power to find differences in multi-subject functional connectivity. Front. Neurosci. 10 108. |

[49] | Nicosia, V. and Latora, V. (2015). Measuring and modeling correlations in multiplex networks. Phys. Rev. E 92 032805. |

[50] | Papadimitriou, C. H. (2003). Computational Complexity. Wiley, New York. · Zbl 0557.68033 |

[51] | Paul, S. and Chen, Y. (2016a). Consistent community detection in multi-relational data through restricted multi-layer stochastic blockmodel. Electron. J. Stat. 10 3807-3870. · Zbl 1357.62226 |

[52] | Paul, S. and Chen, Y. (2016b). Null models and modularity based community detection in multi-layer networks. Preprint. Available at arXiv:1608.00623. |

[53] | Paul, S. and Chen, Y. (2016c). Orthogonal symmetric non-negative matrix factorization under the stochastic block model. Preprint. Available at arXiv:1605.05349. |

[54] | Paul, S. and Chen, Y. (2020a). Spectral and matrix factorization methods for consistent community detection in multi-layer networks. Ann. Statist. 48 230-250. · Zbl 1440.62091 |

[55] | Paul, S. and Chen, Y. (2020b). Supplement to “A random effects stochastic block model for joint community detection in multiple networks with applications to neuroimaging.” https://doi.org/10.1214/20-AOAS1339SUPP |

[56] | Peixoto, T. P. (2015). Inferring the mesoscale structure of layered, edge-valued, and time-varying networks. Phys. Rev. E 92 042807. |

[57] | Penny, W. D., Friston, K. J., Ashburner, J. T., Kiebel, S. J. and Nichols, T. E. (2011). Statistical Parametric Mapping: The Analysis of Functional Brain Images. Academic Press, San Diego. |

[58] | Percival, D. B. and Walden, A. T. (2006). Wavelet Methods for Time Series Analysis. Cambridge Series in Statistical and Probabilistic Mathematics 4. Cambridge Univ. Press, Cambridge. |

[59] | Power, J. D., Cohen, A. L., Nelson, S. M., Wig, G. S., Barnes, K. A., Church, J. A., Vogel, A. C., Laumann, T. O., Miezin, F. M. et al. (2011). Functional network organization of the human brain. Neuron 72 665-678. |

[60] | Qin, T. and Rohe, K. (2013). Regularized spectral clustering under the degree-corrected stochastic blockmodel. In Advances in Neural Information Processing Systems 3120-3128. |

[61] | Reichardt, J. and Bornholdt, S. (2006). Statistical mechanics of community detection. Phys. Rev. E (3) 74 016110, 14. · Zbl 1459.91116 |

[62] | Reyes, P. and Rodriguez, A. (2016). Stochastic blockmodels for exchangeable collections of networks. Preprint. Available at arXiv:1606.05277. |

[63] | Rohe, K., Chatterjee, S. and Yu, B. (2011). Spectral clustering and the high-dimensional stochastic blockmodel. Ann. Statist. 39 1878-1915. · Zbl 1227.62042 |

[64] | Rubinov, M. and Sporns, O. (2010). Complex network measures of brain connectivity: Uses and interpretations. NeuroImage 52 1059-1069. |

[65] | Simpson, S. L., Bowman, F. D. and Laurienti, P. J. (2013). Analyzing complex functional brain networks: Fusing statistics and network science to understand the brain. Stat. Surv. 7 1-36. · Zbl 1279.92021 |

[66] | Simpson, S. L., Lyday, R. G., Hayasaka, S., Marsh, A. P. and Laurienti, P. J. (2013). A permutation testing framework to compare groups of brain networks. Front. Comput. Neurosci. 7 171. |

[67] | Sporns, O. (2014). Contributions and challenges for network models in cognitive neuroscience. Nat. Neurosci. 17 652-660. |

[68] | Stam, C. J. (2014). Modern network science of neurological disorders. Nat. Rev., Neurosci. 15 683-695. |

[69] | Stanley, N., Shai, S., Taylor, D. and Mucha, P. J. (2016). Clustering network layers with the strata multilayer stochastic block model. IEEE Trans. Netw. Sci. Eng. 3 95-105. |

[70] | Steen, M., Hayasaka, S., Joyce, K. and Laurienti, P. (2011). Assessing the consistency of community structure in complex networks. Phys. Rev. E 84 016111. |

[71] | Stevens, A. A., Tappon, S. C., Garg, A. and Fair, D. A. (2012). Functional brain network modularity captures inter- and intra-individual variation in working memory capacity. PLoS ONE 7 e30468. |

[72] | Stewart, G. W. and Sun, J. G. (1990). Matrix Perturbation Theory. Computer Science and Scientific Computing. Academic Press, Boston, MA. |

[73] | Sweet, T. M., Thomas, A. C. and Junker, B. W. (2015). Hierarchical mixed membership stochastic blockmodels for multiple networks and experimental interventions. In Handbook of Mixed Membership Models and Their Applications. Chapman & Hall/CRC Handb. Mod. Stat. Methods 463-487. CRC Press, Boca Raton, FL. |

[74] | Tang, W., Lu, Z. and Dhillon, I. S. (2009). Clustering with multiple graphs. In Proceedings of the Ninth IEEE International Conference on Data Mining 1016-1021. IEEE Press, New York. |

[75] | Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B. and Joliot, M. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 15 273-289. |

[76] | Valles-Catala, T., Massucci, F. A., Guimera, R. and Sales-Pardo, M. (2016). Multilayer stochastic block models reveal the multilayer structure of complex networks. Phys. Rev. X 6 011036. |

[77] | Van Den Heuvel, M. P. and Pol, H. E. H. (2010). Exploring the brain network: A review on resting-state fMRI functional connectivity. Eur. Neuropsychopharmacol. 20 519-534. |

[78] | van den Heuvel, M. P., Mandl, R. C., Stam, C. J., Kahn, R. S. and Pol, H. E. H. (2010). Aberrant frontal and temporal complex network structure in schizophrenia: A graph theoretical analysis. J. Neurosci. 30 15915-15926. |

[79] | van den Heuvel, M. P., Sporns, O., Collin, G., Scheewe, T., Mandl, R. C., Cahn, W., Goñi, J., Pol, H. E. H. and Kahn, R. S. (2013). Abnormal rich club organization and functional brain dynamics in schizophrenia. JAMA Psychiatry 70 783-792. |

[80] | Wang, J., Zuo, X., Dai, Z., Xia, M., Zhao, Z., Zhao, X., Jia, J., Han, Y. and He, Y. (2013). Disrupted functional brain connectome in individuals at risk for Alzheimer’s disease. Biological Psychiatry 73 472-481. |

[81] | Weber, M. J., Detre, J. A., Thompson-Schill, S. L. and Avants, B. B. (2013). Reproducibility of functional network metrics and network structure: A comparison of task-related BOLD, resting ASL with BOLD contrast, and resting cerebral blood flow. Cognitive, Affective, & Behavioral Neuroscience 13 627-640. |

[82] | Whitfield-Gabrieli, S. and Nieto-Castanon, A. (2012). CONN: A functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect. 2 125-141. |

[83] | Xia, M., Wang, J. and He, Y. (2013). BrainNet viewer: A network visualization tool for human brain connectomics. PLoS ONE 8 e68910. |

[84] | Yu, Q., Plis, S. M., Erhardt, E. B., Allen, E. A., Sui, J., Kiehl, K. A., Pearlson, G. and Calhoun, V. D. (2011). Modular organization of functional network connectivity in healthy controls and patients with schizophrenia during the resting state. Front. Syst. Neurosci. 5 103. |

[85] | Yu, Q., Allen, E. A., Sui, J., Arbabshirani, M. R., Pearlson, G. and Calhoun, V. D. (2012). Brain connectivity networks in schizophrenia underlying resting state functional magnetic resonance imaging. Current Topics in Medicinal Chemistry 12 2415-2425. |

[86] | Zalesky, A. |

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.