×

zbMATH — the first resource for mathematics

Almost Hermitian symmetric manifolds. II: Differential invariants. (English) Zbl 0724.53020
The author continues the study initiated in part I [ibid. 81-112 (1991; see the review above)] and uses here the local twistor connection uniquely associated to an almost Hermitian structure and Lie algebra cohomology in order to construct linear differential invariants of almost Hermitian symmetric structures.
Reviewer: C.-L.Bejan (Iaşi)

MSC:
53C15 General geometric structures on manifolds (almost complex, almost product structures, etc.)
Citations:
Zbl 0724.53019
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] T. N. Bailey, M. G. Eastwood, and A. R. Gover, Local twistors for conformal, projective and related structures , preprint, Univ. of Adelaide, 1989. · Zbl 0828.53012
[2] R. J. Baston, Almost Hermitian symmetric manifolds. I. Local twistor theory , Duke Math. J. 63 (1991), no. 1, 81-112. · Zbl 0724.53019
[3] R. J. Baston, Verma modules and differential conformal invariants , J. Differential Geom. 32 (1990), no. 3, 851-898. · Zbl 0732.53011
[4] R. J. Baston and M. G. Eastwood, The Penrose transform , Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, 1989. · Zbl 0726.58004
[5] R. J. Baston and M. G. Eastwood, Invariant operators , Twistors in mathematics and physics eds. T. N. Bailey and R. J. Baston, London Math. Soc. Lecture Note Ser., vol. 156, Cambridge Univ. Press, Cambridge, 1990, pp. 129-163. · Zbl 0760.53015
[6] R. J. Baston and L. J. Mason, Conformal gravity, the Einstein equations and spaces of complex null geodesics , Classical Quantum Gravity 4 (1987), no. 4, 815-826. · Zbl 0647.53057
[7] I. N. Bernstein, I. M. Gelfand, and S. I. Gelfand, Differential operators on the base affine space and a study of \(\mathfrak g\)-modules , Lie groups and their representations (Proc. Summer School, Bolyai János Math. Soc., Budapest, 1971) eds. I. M. Gelfand and Higler Adam, Halsted, New York, 1975, pp. 21-64. · Zbl 0338.58019
[8] B. D. Boe, Kazhdan-Lusztig polynomials for Hermitian symmetric spaces , Trans. Amer. Math. Soc. 309 (1988), no. 1, 279-294. · Zbl 0669.17009
[9] D. H. Collingwood, The \(\mathfrak n\)-homology of Harish-Chandra modules: generalizing a theorem of Kostant , Math. Ann. 272 (1985), no. 2, 161-187. · Zbl 0548.22007
[10] L. G. Casian and D. H. Collingwood, The Kazhdan-Lusztig conjecture for generalized Verma modules , Math. Z. 195 (1987), no. 4, 581-600. · Zbl 0624.22010
[11] M. G. Eastwood and J. W. Rice, Conformally invariant differential operators on Minkowski space and their curved analogues , Comm. Math. Phys. 109 (1987), no. 2, 207-228. · Zbl 0659.53047
[12] M. Eastwood and M. Singer, A conformally invariant Maxwell gauge , Phys. Lett. A 107 (1985), no. 2, 73-74. · Zbl 0978.83505
[13] C. Fefferman and R. Graham, preprint, Princeton Univ., 1984.
[14] R. A. Gover, Conformally invariant operators of standard type , Quart. J. Math. Oxford Ser. (2) 40 (1989), no. 158, 197-207. · Zbl 0683.53063
[15] C. R. Graham, private communication. · Zbl 1454.81011
[16] C. R. Graham, R. Jenne, J. L. Mason, and G. A. J. Sparling, Conformally invariant differential operators , preprint, 1990.
[17] H. Hiller, Geometry of Coxeter groups , Research Notes in Mathematics, vol. 54, Pitman (Advanced Publishing Program), Boston, Mass., 1982. · Zbl 0483.57002
[18] J. C. Jantzen, Moduln mit einem höchsten Gewicht , Lecture Notes in Mathematics, vol. 750, Springer, Berlin, 1979. · Zbl 0426.17001
[19] N. Jacobson, Lie algebras , Interscience Tracts in Pure and Applied Mathematics, No. 10, Interscience Publishers (a division of John Wiley & Sons), New York-London, 1962. · Zbl 0121.27504
[20] S. Kobayashi, Transformation groups in differential geometry , Springer-Verlag, New York, 1972. · Zbl 0246.53031
[21] P. Cartier, Remarks on “Lie algebra cohomology and the generalized Borel-Weil theorem”, by B. Kostant , Ann. of Math. (2) 74 (1961), 388-390. JSTOR: · Zbl 0134.03502
[22] A. Lascoux and M.-P. Schützenberger, Polynômes de Kazhdan & Lusztig pour les grassmanniennes , Young tableaux and Schur functors in algebra and geometry (Toruń, 1980), Astérisque, vol. 87, Soc. Math. France, Paris, 1981, pp. 249-266. · Zbl 0504.20007
[23] C. R. LeBrun, Ambi-twistors and Einstein’s equations , Classical Quantum Gravity 2 (1985), no. 4, 555-563. · Zbl 0575.53028
[24] C. R. LeBrun, Twistors, ambitwistors, and conformal gravity , Twistors in mathematics and physics eds. T. N. Bailey and R. J. Baston, London Math. Soc. Lecture Note Ser., vol. 156, Cambridge Univ. Press, Cambridge, 1990, pp. 71-86.
[25] J. Lepowsky, A generalization of the Bernstein-Gelfand-Gelfand resolution , J. Algebra 49 (1977), no. 2, 496-511. · Zbl 0381.17006
[26] T. Ochiai, Geometry associated with semisimple flat homogeneous spaces , Trans. Amer. Math. Soc. 152 (1970), 159-193. JSTOR: · Zbl 0205.26004
[27] R. Penrose and W. Rindler, Spinors and space-time. Vol. 2 , Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1986. · Zbl 0591.53002
[28] S. Sternberg, Lectures on differential geometry , Chelsea Publishing Co., New York, 1983. · Zbl 0518.53001
[29] D. A. Vogan, Representations of real reductive Lie groups , Progress in Mathematics, vol. 15, Birkhäuser Boston, Mass., 1981. · Zbl 0469.22012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.