zbMATH — the first resource for mathematics

Modified LSM for size-dependent wave propagation: comparison with modified couple stress theory. (English) Zbl 1440.74170
Summary: A modified LSM is proposed by introducing an independent micro-rotational inertia, which may help characterize the scale-dependent effect and avoid the Poisson’s ratio limitation of regular triangle lattices in two dimensions. For this method, some factors may affect data pickup and modeling accuracy, but the ‘optimal’ inputs, like stiffness ratio, numerical damping, and micro-rotational inertia, could be obtained from parameter identification by the Dakota toolkit [B. M. Adams et al., “A multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis: version 5.0 user’s manual”, Tech. Rep. SAND2010-2183. Sandia National Laboratories (2009)], when a suitable excitation source function and lattice spacing are set up. By comparing with the modified couple stress theory, we analyze the dispersion relationship of elastic waves for the estimation of the characteristic material length. It shows that this modified LSM may provide an alternative and promising way to investigate the size-dependent wave propagation in elastic media numerically.
74J10 Bulk waves in solid mechanics
74A60 Micromechanical theories
74M25 Micromechanics of solids
Full Text: DOI
[1] Adams, B.M., Bohnhoff, W., Dalbey, K., Eddy, J., Eldred, M., Gay, D., Haskell, K., Hough, P.D., Swiler, L.P.: Dakota, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis: version 5.0 user’s manual. Sandia National Laboratories, Tech. Rep. SAND2010-2183 (2009)
[2] Akbarzadeh Khorshidi, M.; Shariati, M., An investigation of stress wave propagation in a shear deformable nanobeam based on modified couple stress theory, Waves Random Complex Media, 26, 2, 243-258 (2016) · Zbl 1378.74023
[3] Caldarelli, G.; Castellano, C.; Petri, A., Criticality in models for fracture in disordered media, Physica A, 270, 1-2, 15-20 (1999)
[4] Chong, A.; Yang, F.; Lam, D.; Tong, P., Torsion and bending of micron-scaled structures, J. Mater. Res., 16, 4, 1052-1058 (2001)
[5] Cosserat, E.: Theorie des corps deformables. Herman et fils Paris (1909) · JFM 40.0862.02
[6] Cundall, PA; Strack, OD, A discrete numerical model for granular assemblies, Geotechnique, 29, 1, 47-65 (1979)
[7] Cusatis, G.; Bažant, ZP; Cedolin, L., Confinement-shear lattice model for concrete damage in tension and compression: I. Theory, J. Eng. Mech., 129, 12, 1439-1448 (2003)
[8] Damjanac, B.; Detournay, C.; Cundall, PA, Application of particle and lattice codes to simulation of hydraulic fracturing, Comput. Part. Mech., 3, 2, 249-261 (2016)
[9] Del Valle-García, R., Sánchez-Sesma, F.J.: Rayleigh waves modeling using an elastic lattice model. Geophys. Res. Lett. 30(16), SDE12. 1-SDE12. 4 (2003)
[10] Eringen, A.C.: Mechanics of micromorphic continua. In: Mechanics of Generalized Continua, pp. 18-35. Springer (1968) · Zbl 0181.53802
[11] Gao, XL; Huang, J.; Reddy, J., A non-classical third-order shear deformation plate model based on a modified couple stress theory, Acta Mech., 224, 11, 2699-2718 (2013) · Zbl 1336.74042
[12] Gholamy, A., Kreinovich, V.: Why ricker wavelets are successful in processing seismic data: towards a theoretical explanation. In: 2014 IEEE Symposium on Computational Intelligence for Engineering Solutions (CIES), pp. 11-16. IEEE (2014)
[13] Griffiths, D.; Mustoe, GG, Modelling of elastic continua using a grillage of structural elements based on discrete element concepts, Int. J. Numer. Methods Eng., 50, 7, 1759-1775 (2001) · Zbl 1006.74086
[14] Grubmüller, H.; Heller, H.; Windemuth, A.; Schulten, K., Generalized verlet algorithm for efficient molecular dynamics simulations with long-range interactions, Mol. Simul., 6, 1-3, 121-142 (1991)
[15] Güven, U., The investigation of the nonlocal longitudinal stress waves with modified couple stress theory, Acta Mech., 221, 3-4, 321-325 (2011) · Zbl 1304.74029
[16] Güven, U., A more general investigation for the longitudinal stress waves in microrods with initial stress, Acta Mech., 223, 9, 2065-2074 (2012) · Zbl 1356.74097
[17] Güven, U., Two mode Mindlin-Herrmann rod solution based on modified couple stress theory, J. Appl. Math. Mech. Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM), 94, 12, 1011-1016 (2014) · Zbl 1303.74023
[18] Hadjesfandiari, AR; Dargush, GF, Couple stress theory for solids, Int. J. Solids Struct., 48, 18, 2496-2510 (2011)
[19] Hahn, M.; Bouriga, M.; Kröplin, BH; Wallmersperger, T., Life time prediction of metallic materials with the discrete-element-method, Comput. Mater. Sci., 71, 146-156 (2013)
[20] Hassold, G.; Srolovitz, D., Brittle fracture in materials with random defects, Phys. Rev. B, 39, 13, 9273 (1989)
[21] Ikelle, LT; Amundsen, L., Introduction to Petroleum Seismology (2018), Tulsa: Society of Exploration Geophysicists, Tulsa
[22] Jiang, C.; Zhao, GF, Implementation of a coupled plastic damage distinct lattice spring model for dynamic crack propagation in geomaterials, Int. J. Numer. Anal. Meth. Geomech., 42, 4, 674-693 (2018)
[23] Karihaloo, BL; Shao, P.; Xiao, Q., Lattice modelling of the failure of particle composites, Eng. Fract. Mech., 70, 17, 2385-2406 (2003)
[24] Kawai, T., New discrete models and their application to seismic response analysis of structures, Nucl. Eng. Des., 48, 1, 207-229 (1978)
[25] Khorshidi, MA; Shariati, M., Propagation of stress wave in a functionally graded nano-bar based on modified couple stress theory, J. Mech. Eng. Technol. (JMET), 7, 1, 43-56 (2015)
[26] Koiter, W.: Couple-stress in the theory of elasticity. In: Proc. K. Ned. Akad. Wet, vol. 67, pp. 17-44. North Holland Pub (1964) · Zbl 0124.17405
[27] Kumagai, H.; Saito, T.; O’Brien, G.; Yamashina, T., Characterization of scattered seismic wavefields simulated in heterogeneous media with topography, J. Geophys. Res. Solid Earth, 116, B3, B03308 (2011)
[28] Li, G.; Tang, G.; Luo, G.; Wang, H., Underdetermined blind separation of bearing faults in hyperplane space with variational mode decomposition, Mech. Syst. Signal Process., 120, 83-97 (2019)
[29] Lilliu, G.; van Mier, JG, 3D lattice type fracture model for concrete, Eng. Fract. Mech., 70, 7-8, 927-941 (2003)
[30] Liu, H.; Zhang, Y.; Kang, W.; Zhang, P.; Duan, H.; He, X., Molecular dynamics simulation of strong shock waves propagating in dense deuterium, taking into consideration effects of excited electrons, Phys. Rev. E, 95, 2, 023201 (2017)
[31] Liu, J.; Deng, S.; Zhang, J.; Liang, N., Lattice type of fracture model for concrete, Theor. Appl. Fract. Mech., 48, 3, 269-284 (2007)
[32] Liu, N.; Li, M.; Chen, W., Mechanical deterioration of rock salt at different confinement levels: a grain-based lattice scheme assessment, Comput. Geotech., 84, 210-224 (2017)
[33] Liu, N.; Wang, YG; Li, M.; Jia, J., Nonlinear buckling analyses of a small-radius carbon nanotube, J. Appl. Phys., 115, 15, 154301 (2014)
[34] Ma, H.; Gao, XL; Reddy, J., A microstructure-dependent timoshenko beam model based on a modified couple stress theory, J. Mech. Phys. Solids, 56, 12, 3379-3391 (2008) · Zbl 1171.74367
[35] Ma, H.; Gao, XL; Reddy, J., A non-classical Mindlin plate model based on a modified couple stress theory, Acta Mech., 220, 1-4, 217-235 (2011) · Zbl 1237.74133
[36] Matle, S., Elastic wave propagation study in copper poly-grain sample using FEM, Theor. Appl. Mech. Lett., 7, 1, 1-5 (2017)
[37] Meriam, JL; Kraige, LG, Engineering Mechanics: Dynamics (2012), Hoboken: Wiley, Hoboken
[38] Mindlin, R.; Tiersten, H., Effects of couple-stresses in linear elasticity, Arch. Ration. Mech. Anal., 11, 1, 415-448 (1962) · Zbl 0112.38906
[39] Monette, L.; Anderson, M., Elastic and fracture properties of the two-dimensional triangular and square lattices, Modell. Simul. Mater. Sci. Eng., 2, 1, 53 (1994)
[40] Mühlhaus, H.; Oka, F., Dispersion and wave propagation in discrete and continuous models for granular materials, Int. J. Solids Struct., 33, 19, 2841-2858 (1996) · Zbl 0926.74052
[41] Ostoja-Starzewski, M., Lattice models in micromechanics, Appl. Mech. Rev., 55, 1, 35-60 (2002) · Zbl 1110.74611
[42] Ostoja-Starzewski, M.; Sheng, P.; Alzebdeh, K., Spring network models in elasticity and fracture of composites and polycrystals, Comput. Mater. Sci., 7, 1-2, 82-93 (1996)
[43] Otter, JRH; Cassell, AC; Hobbs, RE, POISSON: dynamic relaxation, Proc. Inst. Civ. Eng., 35, 4, 633-656 (1966)
[44] Park, S.; Gao, X., Bernoulli-euler beam model based on a modified couple stress theory, J. Micromech. Microeng., 16, 11, 2355 (2006)
[45] Park, S.; Gao, XL, Variational formulation of a modified couple stress theory and its application to a simple shear problem, Zeitschrift für angewandte Mathematik und Physik, 59, 5, 904-917 (2008) · Zbl 1157.74014
[46] Reck, M., Lattice spring methods for arbitrary meshes in two and three dimensions, Int. J. Numer. Methods Eng., 110, 4, 333-349 (2017) · Zbl 1375.74091
[47] Schlangen, E.; Garboczi, E., Fracture simulations of concrete using lattice models: computational aspects, Eng. Fract. Mech., 57, 2-3, 319-332 (1997)
[48] Suiker, A.; Metrikine, A.; De Borst, R., Comparison of wave propagation characteristics of the Cosserat continuum model and corresponding discrete lattice models, Int. J. Solids Struct., 38, 9, 1563-1583 (2001) · Zbl 0984.74034
[49] Toomey, A.; Bean, CJ, Numerical simulation of seismic waves using a discrete particle scheme, Geophys. J. Int., 141, 3, 595-604 (2000)
[50] Toupin, RA, Elastic materials with couple-stresses, Arch. Ration. Mech. Anal., 11, 1, 385-414 (1962) · Zbl 0112.16805
[51] Voigt, W., Ueber die beziehung zwischen den beiden elasticitätsconstanten isotroper körper, Ann. Phys., 274, 12, 573-587 (1889) · JFM 21.1039.01
[52] Wang, YG; Lin, WH; Liu, N., Large amplitude free vibration of size-dependent circular microplates based on the modified couple stress theory, Int. J. Mech. Sci., 71, 51-57 (2013)
[53] Wang, YG; Lin, WH; Liu, N., Nonlinear free vibration of a microscale beam based on modified couple stress theory, Physica E, 47, 80-85 (2013)
[54] Wang, YG; Lin, WH; Liu, N., Nonlinear bending and post-buckling of extensible microscale beams based on modified couple stress theory, Appl. Math. Model., 39, 1, 117-127 (2015) · Zbl 1428.74130
[55] Xia, M.; Zhou, H.; Chen, H.; Zhang, Q.; Li, Q., A rectangular-grid lattice spring model for modeling elastic waves in poisson’s solids, Geophysics, 83, 2, T69-T86 (2018)
[56] Yang, C.; Hou, X.; Wang, L., Thermal design, analysis and comparison on three concepts of space solar power satellite, Acta Astronaut., 137, 382-402 (2017)
[57] Yang, C.; Liang, K.; Zhang, X.; Geng, X., Sensor placement algorithm for structural health monitoring with redundancy elimination model based on sub-clustering strategy, Mech. Syst. Signal Process., 124, 369-387 (2019)
[58] Yang, C.; Lu, Z.; Yang, Z., Robust optimal sensor placement for uncertain structures with interval parameters, IEEE Sens. J., 18, 5, 2031-2041 (2018)
[59] Yang, C.; Zhang, X.; Huang, X.; Cheng, Z.; Zhang, X.; Hou, X., Optimal sensor placement for deployable antenna module health monitoring in SSPS using genetic algorithm, Acta Astronaut., 140, 213-224 (2017)
[60] Yang, F.; Chong, A.; Lam, DCC; Tong, P., Couple stress based strain gradient theory for elasticity, Int. J. Solids Struct., 39, 10, 2731-2743 (2002) · Zbl 1037.74006
[61] Yang, L.; Lobkis, O.; Rokhlin, S., An integrated model for ultrasonic wave propagation and scattering in a polycrystalline medium with elongated hexagonal grains, Wave Motion, 49, 5, 544-560 (2012) · Zbl 1360.74089
[62] Zhang, G.; Gao, XL, A non-classical kirchhoff rod model based on the modified couple stress theory, Acta Mech., 230, 1, 243-264 (2019) · Zbl 1412.74043
[63] Zhang, P.; Wei, P.; Li, Y., Wave propagation through a micropolar slab sandwiched by two elastic half-spaces, J. Vib. Acoust., 138, 4, 041008 (2016)
[64] Zhao, GF; Fang, J.; Sun, L.; Zhao, J., Parallelization of the distinct lattice spring model, Int. J. Numer. Anal. Methods Geomech., 37, 1, 51-74 (2013)
[65] Zhao, GF; Fang, J.; Zhao, J., A 3D distinct lattice spring model for elasticity and dynamic failure, Int. J. Numer. Anal. Methods Geomech., 35, 8, 859-885 (2011) · Zbl 1274.74438
[66] Zubelewicz, A.; Bažant, ZP, Interface element modeling of fracture in aggregate composites, J. Eng. Mech., 113, 11, 1619-1630 (1987)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.