# zbMATH — the first resource for mathematics

Computing isomorphisms between lattices. (English) Zbl 1452.11134
Let $$K$$ be a number field with ring of integers $$O_K$$. Let $$A$$ be a finite-dimensional semisimple $$K$$-algebra, and $$A = A_1 \oplus \cdots \oplus A_r$$ be the decomposition of $$A$$ into indecomposable two-sided ideals, and denote by $$K_i$$ the center of the simple algebra $$A_i$$. We consider the following two hypotheses:
(H1) For each $$i$$, we can compute an explicit isomorphism $$A_i \cong Mat_{n_i\times n_i}(D_i)$$ of $$K$$-algebras, where $$D_i$$ is a skew field with center $$K_i$$.
(H2) For every maximal $$O_K$$-order $$\Delta_i$$ in $$D_i$$ we can solve the principal ideal problem for fractional left $$\Delta_i$$-ideals, and $$\Delta_i$$ has the locally free cancellation property.
Let $$\Lambda$$ be an $$O_K$$-order in $$A$$. Recall that a $$\Lambda$$-lattice is a (left) $$\Lambda$$-module that is finitely generated and torsion-free over $$O_K$$. In this paper, it is proved, under the above hypotheses, that there exists an algorithm that for two given $$\Lambda$$-lattices $$X$$ and $$Y$$ either computes an isomorphism $$X\rightarrow Y$$ or determines that $$X$$ and $$Y$$ are not isomorphic. The algorithm is implemented in the algebraic computational package Magma for $$A = Q[G]$$, $$\Lambda = Z[G]$$, and $$\Lambda$$-lattices $$X$$ and $$Y$$ contained in $$Q[G]$$, where $$G$$ is a finite group satisfying certain hypotheses. The implementation can decide whether two $$Z[G]$$-lattices contained in $$Q[G]$$ are isomorphic and, if so, gives an explicit isomorphism. Experimental results are discussed.
##### MSC:
 11R33 Integral representations related to algebraic numbers; Galois module structure of rings of integers 11Y40 Algebraic number theory computations 16Z05 Computational aspects of associative rings (general theory)
##### Keywords:
lattice; isomorphism; algorithm; order; number field
##### Software:
Nemo; Magma; Hecke
Full Text:
##### References:
 [1] A. Agboola and L. Caputo, On the square root of the inverse different, 1803.09392 (2020). [2] Bley, Werner; Boltje, Robert, Computation of Locally Free Class Groups. Algorithmic number theory, Lecture Notes in Comput. Sci. 4076, 72-86 (2006), Springer, Berlin · Zbl 1143.11355 [3] Braun, Oliver; Coulangeon, Renaud; Nebe, Gabriele; Sch\"{o}nnenbeck, Sebastian, Computing in arithmetic groups with Vorono\"{\i}’s algorithm, J. Algebra, 435, 263-285 (2015) · Zbl 1323.16014 [4] Bosma, Wieb; Cannon, John; Playoust, Catherine, The Magma algebra system. I. The user language, J. Symbolic Comput., 24, 3-4, 235-265 (1997) · Zbl 0898.68039 [5] Bley, W.; Endres, M., Picard groups and refined discrete logarithms, LMS J. Comput. Math., 8, 1-16 (2005) · Zbl 1119.11067 [6] Biasse, Jean-Fran\c{c}ois; Fieker, Claus; Hofmann, Tommy, On the computation of the HNF of a module over the ring of integers of a number field, J. Symbolic Comput., 80, part 3, 581-615 (2017) · Zbl 1403.11084 [7] Bley, Werner; Johnston, Henri, Computing generators of free modules over orders in group algebras, J. Algebra, 320, 2, 836-852 (2008) · Zbl 1151.16021 [8] Bley, Werner; Johnston, Henri, Computing generators of free modules over orders in group algebras II, Math. Comp., 80, 276, 2411-2434 (2011) · Zbl 1273.16016 [9] Bley, W., Computing associated orders and Galois generating elements of unit lattices, J. Number Theory, 62, 2, 242-256 (1997) · Zbl 0883.11048 [10] Bley, Werner; Wilson, Stephen M. J., Computations in relative algebraic $$K$$-groups, LMS J. Comput. Math., 12, 166-194 (2009) · Zbl 1225.16003 [11] Chinburg, Ted, Exact sequences and Galois module structure, Ann. of Math. (2), 121, 2, 351-376 (1985) · Zbl 0567.12010 [12] Cohen, Henri, A Course in Computational Algebraic Number Theory, Graduate Texts in Mathematics 138, xii+534 pp. (1993), Springer-Verlag, Berlin · Zbl 0786.11071 [13] Cohen, Henri, Advanced Topics in Computational Number Theory, Graduate Texts in Mathematics 193, xvi+578 pp. (2000), Springer-Verlag, New York · Zbl 0977.11056 [14] Cougnard, Jean, Un anneau d’entiers stablement libre et non libre, Experiment. Math., 3, 2, 129-136 (1994) · Zbl 0837.11062 [15] Cougnard, Jean, Anneaux d’entiers stablement libres sur $$\mathbb{Z}[H_8\times C_2]$$, J. Th\'{e}or. Nombres Bordeaux, 10, 1, 163-201 (1998) · Zbl 0924.11093 [16] Curtis, Charles W.; Reiner, Irving, Methods of Representation Theory. Vol. I, xxi+819 pp. (1981), John Wiley & Sons, Inc., New York · Zbl 0698.20001 [17] Curtis, Charles W.; Reiner, Irving, Methods of Representation Theory. Vol. II, Pure and Applied Mathematics (New York), xviii+951 pp. (1987), John Wiley & Sons, Inc., New York · Zbl 0616.20001 [18] Caputo, Luca; Vinatier, St\'{e}phane, Galois module structure of the square root of the inverse different in even degree tame extensions of number fields, J. Algebra, 468, 103-154 (2016) · Zbl 1407.11129 [19] Demb\'{e}l\'{e}, Lassina; Donnelly, Steve, Computing Hilbert Modular Forms over Fields with Nontrivial Class Group. Algorithmic number theory, Lecture Notes in Comput. Sci. 5011, 371-386 (2008), Springer, Berlin · Zbl 1232.11128 [20] W. M. Eberly, Computations for algebras and group representations, Ph.D. thesis, University of Toronto, 1989. [21] Erez, B., The Galois structure of the square root of the inverse different, Math. Z., 208, 2, 239-255 (1991) · Zbl 0713.11078 [22] Fieker, Claus; Hofmann, Tommy, Computing in quotients of rings of integers, LMS J. Comput. Math., 17, suppl. A, 349-365 (2014) · Zbl 1369.11104 [23] Fieker, Claus; Hart, William; Hofmann, Tommy; Johansson, Fredrik, Nemo/Hecke: Computer Algebra and Number Theory Packages for the Julia Programming Language. ISSAC’17-Proceedings of the 2017 ACM International Symposium on Symbolic and Algebraic Computation, 157-164 (2017), ACM, New York · Zbl 1457.68325 [24] Fieker, Claus; Hofmann, Tommy; Sircana, Carlo, On the Construction of Class Fields. Proceedings of the Thirteenth Algorithmic Number Theory Symposium, Open Book Ser. 2, 239-255 (2019), Math. Sci. Publ., Berkeley, CA [25] Fletcher, C. R., Euclidean rings, J. London Math. Soc. (2), 4, 79-82 (1971) · Zbl 0218.13025 [26] C. Friedrichs, Berechnung von Maximalordnungen \"uber Dedekindringen, Ph.D. thesis, Technische Universit\"at Berlin, 2000. · Zbl 1110.16301 [27] Algebraic number theory, Proceedings of an instructional conference organized by the London Mathematical Society (a NATO Advanced Study Institute) with the support of the International Mathematical Union, xviii+366 pp. (1967), Academic Press, London; Thompson Book Co., Inc., Washington, D.C. [28] A. Fr\"ohlich, Some problems of Galois module structure for wild extensions, Proc. London Math. Soc. (3) 37 (1978), no. 2, 193-212. · Zbl 0389.12004 [29] Fr\"{o}hlich, Albrecht, Galois Module Structure of Algebraic Integers, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)] 1, x+262 pp. (1983), Springer-Verlag, Berlin · Zbl 0501.12012 [30] Fr\"{o}hlich, A.; Taylor, M. J., Algebraic Number Theory, Cambridge Studies in Advanced Mathematics 27, xiv+355 pp. (1993), Cambridge University Press, Cambridge · Zbl 0744.11001 [31] Girstmair, Kurt, An algorithm for the construction of a normal basis, J. Number Theory, 78, 1, 36-45 (1999) · Zbl 0954.11035 [32] Higman, D. G., On representations of orders over Dedekind domains, Canadian J. Math., 12, 107-125 (1960) · Zbl 0090.02801 [33] Hallouin, Emmanuel; Maire, Christian, Cancellation in totally definite quaternion algebras, J. Reine Angew. Math., 595, 189-213 (2006) · Zbl 1100.15007 [34] T. Hofmann, Integrality of representations of finite groups, Ph.D. thesis, Technische Universit\"at Kaiserslautern, 2016. [35] Jacobinski, H., On extensions of lattices, Michigan Math. J., 13, 471-475 (1966) · Zbl 0143.05702 [36] Kawamoto, Fuminori, On normal integral bases of local fields, J. Algebra, 98, 1, 197-199 (1986) · Zbl 0595.12007 [37] Kirschmer, Markus; Voight, John, Algorithmic enumeration of ideal classes for quaternion orders, SIAM J. Comput., 39, 5, 1714-1747 (2010) · Zbl 1208.11125 [38] Lam, T. Y., Lectures on Modules and Rings, Graduate Texts in Mathematics 189, xxiv+557 pp. (1999), Springer-Verlag, New York · Zbl 0911.16001 [39] Leopoldt, Heinrich-Wolfgang, \"{U}ber die Hauptordnung der ganzen Elemente eines abelschen Zahlk\"{o}rpers, J. Reine Angew. Math., 201, 119-149 (1959) · Zbl 0098.03403 [40] Lettl, G\"{u}nter, The ring of integers of an abelian number field, J. Reine Angew. Math., 404, 162-170 (1990) · Zbl 0703.11060 [41] Noether, Emmy, Normalbasis bei K\"{o}rpern ohne h\"{o}here Verzweigung, J. Reine Angew. Math., 167, 147-152 (1932) · Zbl 0003.14601 [42] Nebe, Gabriele; Steel, Allan, Recognition of division algebras, J. Algebra, 322, 3, 903-909 (2009) · Zbl 1184.16054 [43] Page, A., An algorithm for the principal ideal problem in indefinite quaternion algebras, LMS J. Comput. Math., 17, suppl. A, 366-384 (2014) · Zbl 1369.11105 [44] W. G. Plesken, Beitr\"age zur Bestimmung der endlichen irreduziblen Untergruppen von $$GL(n,Z)$$ und ihrer ganzzahligen Darstellungen, Ph.D. thesis, RWTH Aachen, 1974. [45] Reiner, I., Maximal Orders, London Mathematical Society Monographs. New Series 28, xiv+395 pp. (2003), The Clarendon Press, Oxford University Press, Oxford · Zbl 1024.16008 [46] Schwartz, J. T., Fast probabilistic algorithms for verification of polynomial identities, J. Assoc. Comput. Mach., 27, 4, 701-717 (1980) · Zbl 0452.68050 [47] Serre, Jean-Pierre, Local Fields, Graduate Texts in Mathematics 67, viii+241 pp. (1979), Springer-Verlag, New York-Berlin [48] Storjohann, Arne; Mulders, Thom, Fast Algorithms for Linear Algebra Modulo $$N$$. Algorithms-ESA ’98 (Venice), Lecture Notes in Comput. Sci. 1461, 139-150 (1998), Springer, Berlin · Zbl 0929.65019 [49] Smertnig, Daniel, A note on cancellation in totally definite quaternion algebras, J. Reine Angew. Math., 707, 209-216 (2015) · Zbl 1329.11122 [50] A. K. Steel, Construction of ordinary irreducible representations of finite groups, Ph.D. thesis, Pure Mathematics, University of Sydney, 2012. [51] Swan, Richard G., Projective modules over binary polyhedral groups, J. Reine Angew. Math., 342, 66-172 (1983) · Zbl 0503.20001 [52] Taylor, M. J., On Fr\"{o}hlich’s conjecture for rings of integers of tame extensions, Invent. Math., 63, 1, 41-79 (1981) · Zbl 0469.12003 [53] Ullom, S., Normal bases in Galois extensions of number fields, Nagoya Math. J., 34, 153-167 (1969) · Zbl 0175.04502 [54] Unger, W. R., Computing the character table of a finite group, J. Symbolic Comput., 41, 8, 847-862 (2006) · Zbl 1125.20006 [55] Vinatier, St\'{e}phane, Sur la racine carr\'{e}e de la codiff\'{e}rente, J. Th\'{e}or. Nombres Bordeaux, 15, 1, 393-410 (2003) · Zbl 1048.11088 [56] Zippel, Richard, Probabilistic Algorithms for Sparse Polynomials. Symbolic and algebraic computation, EUROSAM ’79, Internat. Sympos., Marseille, 1979, Lecture Notes in Comput. Sci. 72, 216-226 (1979), Springer, Berlin-New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.