×

zbMATH — the first resource for mathematics

Comments on: “Inference and computation with generalized additive models and their extensions”. (English) Zbl 1447.62083
Comments on [S. N. Wood, ibid. 29, No. 2, 307–339 (2020; Zbl 1447.62085)].

MSC:
62J05 Linear regression; mixed models
62G08 Nonparametric regression and quantile regression
62R10 Functional data analysis
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Argyropoulos, C.; Unruh, ML, Analysis of time to event outcomes in randomized controlled trials by generalized additive models, PLoS ONE, 10, 4, e0123784 (2015)
[2] Baayen, RH; van Rij, J.; de Cat, C.; Wood, S.; Speelman, D.; Heylen, K.; Geeraert, D., Autocorrelated errors in experimental data in the language sciences: some solutions offered by generalized additive mixed models, Mixed effects regression models in linguistics, 49-69 (2018), Berlin: Springer, Berlin
[3] Bender A, Scheipl F (2018) Pammtools: piece-wise exponential additive mixed modeling tools. Arxiv preprint arXiv:1806.01042
[4] Bender, A.; Groll, A.; Scheipl, F., A generalized additive model approach to time-to-event analysis, Stat Model, 18, 3-4, 299-321 (2018)
[5] Bender, A.; Scheipl, F.; Hartl, W.; Day, AG; Küchenhoff, H., Penalized estimation of complex, non-linear exposure-lag-response associations, Biostatistics, 20, 2, 315-331 (2018)
[6] Brockhaus S, Rügamer D, Greven S (2020) Boosting functional regression models with FDboost. J Stat Softw. https://www.jstatsoft.org/index
[7] Brockhaus, S.; Scheipl, F.; Hothorn, T.; Greven, S., The functional linear array model, Stat Model, 15, 3, 279-300 (2015)
[8] Brockhaus, S.; Melcher, M.; Leisch, F.; Greven, S., Boosting flexible functional regression models with a high number of functional historical effects, Stat Comput, 27, 913-926 (2016) · Zbl 1384.62131
[9] Brockhaus, S.; Fuest, A.; Mayr, A.; Greven, S., Signal regression models for location, scale and shape with an application to stock returns, J R Stat Soc Ser C, 67, 3, 665-686 (2018)
[10] Cederbaum, J.; Pouplier, M.; Hoole, P.; Greven, S., Functional linear mixed models for irregularly or sparsely sampled data, Stat Model, 16, 1, 67-88 (2016)
[11] Cederbaum, J.; Scheipl, F.; Greven, S., Fast symmetric additive covariance smoothing, Comput Stat Data Anal, 120, 25-41 (2018) · Zbl 06920202
[12] Fasiolo M, Nedellec R, Goude Y, Wood SN (2018) Scalable visualisation methods for modern generalized additive models. J Comput Graph Statist. Arxiv preprint arXiv:1707.03307 (to appear)
[13] Fithian W, Sun D, Taylor J (2014) Optimal inference after model selection. Technical report, arXiv:1410.2597
[14] Goldsmith J, Scheipl F, Huang L, Wrobel J, Gellar J, Harezlak J, McLean MW, Swihart B, Xiao L, Crainiceanu C, Reiss PT (2018) Refund: regression with functional data. R package version 0.1-17
[15] Greven, S.; Kneib, T., On the behaviour of marginal and conditional AIC in linear mixed models, Biometrika, 97, 4, 773-789 (2010) · Zbl 1204.62114
[16] Greven, S.; Scheipl, F., Comment on “Smoothing parameter and model selection for general smooth models” by Wood, Pya and Säfken, J Am Stat Assoc, 111, 516, 1568-1573 (2016)
[17] Greven, S.; Scheipl, F., A general framework for functional regression modelling, Stat Model, 17, 1-2, 1-35 (2017)
[18] Heyland, DK; Cahill, NE; Dhaliwal, R.; Sun, X.; Day, AG; McClave, SA, Impact of enteral feeding protocols on enteral nutrition delivery: results of a multicenter observational study, J Parenter Enter Nutr, 34, 6, 675-684 (2010)
[19] Hothorn, T.; Buehlmann, P.; Kneib, T.; Schmid, M.; Hofner, B., Model-based boosting 2.0, J Mach Learn Res, 11, 2109-2113 (2010) · Zbl 1242.68002
[20] Lang, S.; Umlauf, N.; Wechselberger, P.; Harttgen, K.; Kneib, T., Multilevel structured additive regression, Stat Comput, 24, 2, 223-238 (2014) · Zbl 1325.62179
[21] Li, Z.; Wood, SN, Faster model matrix crossproducts for large generalized linear models with discretized covariates, Stat Comput, 30, 19-25 (2020) · Zbl 1436.62352
[22] Pedersen, EJ; Miller, DL; Simpson, GL; Ross, N., Hierarchical generalized additive models: an introduction with mgcv, Peer J Prepr, 6, e27320v1 (2018)
[23] Rügamer, D.; Greven, S., Inference for \(L_2\)-boosting, Stat Comput, 30, 2, 279-289 (2020) · Zbl 1436.62332
[24] Rügamer, D.; Brockhaus, S.; Gentsch, K.; Scherer, K.; Greven, S., Boosting factor-specific functional historical models for the detection of synchronization in bioelectrical signals, J R Stat Soc Ser C Appl Stat, 67, 3, 621-642 (2018)
[25] Scheipl, F.; Staicu, AM; Greven, S., Functional additive mixed models, J Comput Graph Stat, 24, 2, 477-501 (2015)
[26] Scheipl, F.; Gertheiss, J.; Greven, S., Generalized functional additive mixed models, Electron J Stat, 10, 1, 1455-1492 (2016) · Zbl 1341.62242
[27] Shah, R.; Samworth, R., Variable selection with error control: another look at stability selection, J R Stat Soc Ser B, 75, 55-80 (2013)
[28] Stöcker A, Brockhaus S, Schaffer S, von Bronk B, Opitz M, Greven S (2018) Boosting functional response models for location, scale and shape with an application to bacterial competition. Statist Model. arXiv:1809.09881
[29] Tibshirani, R.; Taylor, J.; Lockhart, R.; Tibshirani, R., Exact post-selection inference for sequential regression procedures, J Am Stat Assoc, 111, 514, 600-620 (2016)
[30] Winter, B.; Wieling, M., How to analyze linguistic change using mixed models, growth curve analysis and generalized additive modeling, J Lang Evol, 1, 1, 7-18 (2016)
[31] Wood, SN; Pya, N.; Säfken, B., Smoothing parameter and model selection for general smooth models, J Am Stat Assoc, 111, 516, 1548-1563 (2016)
[32] Wood S (2019) mgcv: mixed GAM computation vehicle with automatic smoothness estimation. R-package version 1.8-31. https://CRAN.R-project.org/package=mgcv
[33] Wood, SN; Li, Z.; Shaddick, G.; Augustin, NH, Generalized additive models for gigadata: modeling the UK black smoke network daily data, J Am Stat Assoc, 112, 519, 1199-1210 (2017)
[34] Yang F, Barber RF, Jain P, Lafferty J (2016) Selective inference for group-sparse linear models. In: Advances in neural information processing systems, pp 2469-2477
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.