×

zbMATH — the first resource for mathematics

Stabilization and a posteriori error analysis of a mixed FEM for convection-diffusion problems with mixed boundary conditions. (English) Zbl 1446.65169
Summary: We introduce a new augmented dual-mixed finite element method for the linear convection-diffusion equation with mixed boundary conditions. The approach is based on adding suitable residual type terms to a dual-mixed formulation of the problem. We prove that for appropriate values of the stabilization parameters, that depend on the diffusivity and the magnitude of the convective velocity, the new variational formulation and the corresponding Galerkin scheme are well-posed and a Céa estimate can be derived. We establish the rate of convergence when the flux and the concentration are approximated, respectively, by Raviart-Thomas/Brezzi-Douglas-Marini and continuous piecewise polynomials. In addition, we develop an a posteriori error analysis of residual type. We derive a simple a posteriori error indicator and prove that it is reliable and locally efficient. Finally, we provide some numerical experiments that illustrate the performance of the method.
MSC:
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
Software:
FEniCS; SyFi
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Hughes, T. J.R.; Brooks, A. N.; Hughes, T. J.R., A multi-dimensional upwind scheme with no crosswind diffusion, FEMs for Convection-Dominated Flows. FEMs for Convection-Dominated Flows, ASME AMD, 34, 19-35 (1979) · Zbl 0423.76067
[2] Johnson, C.; Nävert, U.; Pitkäranta, J., Finite element methods for linear hyperbolic problems, Comput. Methods Appl. Mech. Engrg., 45, 285-312 (1984) · Zbl 0526.76087
[3] Verfürth, R., A posteriori error estimators for convection-diffusion equations, Numer. Math., 80, 4, 641-663 (1998) · Zbl 0913.65095
[4] John, V., A numerical study of a posteriori error estimators for convection-diffusion equations, Comput. Methods Appl. Mech. Engrg., 190, 5-7, 757-781 (2000) · Zbl 0973.76049
[5] Papastavrou, A.; Verfürth, R., A posteriori error estimators for stationary convection-diffusion problems: a computational comparison, Comput. Methods Appl. Mech. Engrg., 189, 2, 449-462 (2000) · Zbl 0963.76050
[6] Verfürth, R., Robust a posteriori error estimates for stationary convection-diffusion equations, SIAM J. Numer. Anal., 43, 4, 1766-1782 (2005) · Zbl 1099.65100
[7] Achchab, B.; Agouzal, A.; El Fatini, M.; Souissi, A., Robust hierarchical a posteriori error estimators for stabilized convection-diffusion problems, Numer. Methods Partial Differential Equations, 28, 1717-1728 (2012) · Zbl 1254.65122
[8] John, V.; Novo, J., A robust SUPG norm a posteriori error estimator for stationary convection-diffusion equations, Comput. Methods Appl. Mech. Engrg., 255, 289-305 (2013) · Zbl 1297.65157
[9] Ainsworth, M.; Allendes, A.; Barrenechea, G. R.; Rankin, R., Fully computable a posteriori error bounds for stabilised FEM approximations of convection-reaction-diffusion problems in three dimensions, Internat. J. Numer. Methods Fluids, 73, 765-790 (2013)
[10] Du, S.; Zhang, Z., A robust residual-type a posteriori error estimator for convection-diffusion equations, J. Sci. Comput., 65, 138-170 (2015) · Zbl 1333.65121
[11] Eigel, M.; Merdon, C., Equilibration a posteriori error estimation for convection-diffusion-reaction problems, J. Sci. Comput., 67, 747-768 (2016) · Zbl 1353.65113
[12] Douglas Jr., J.; Roberts, J. E., Mixed finite element methods for second order elliptic problems, Math. Appl. Comput., 1, 91-103 (1982) · Zbl 0482.65057
[13] Douglas Jr., J.; Roberts, J. E., Global estimates for mixed methods for second order elliptic equations, Math. Comp., 44, 169, 39-52 (1985) · Zbl 0624.65109
[14] Jaffre, J., Decentrage et elements finis mixtes pour les equations de diffusion-convection, Calcolo, 21, 2, 171-197 (1984) · Zbl 0562.65077
[15] Thomas, J.-M., Mixed finite elements methods for convection-diffusion problems, (Numerical Approximation of Partial Differential Equations (1987), Elsevier), 241-250
[16] Farhloul, M.; Mounim, A. S., A mixed-hybrid finite element method for convection-diffusion problems, Appl. Math. Comput., 171, 1037-1047 (2005) · Zbl 1090.65130
[17] Vohralík, M., A posteriori error estimates for lowest-order mixed finite element discretizations of convection-diffusion-reaction equations, SIAM J. Numer. Anal., 45, 4, 1570-1599 (2007) · Zbl 1151.65084
[18] Kim, D.; Park, E.-J., A posteriori error estimators for the upstream weighting mixed methods for convection diffusion problems, Comput. Methods Appl. Mech. Engrg., 197, 806-820 (2008) · Zbl 1169.76391
[19] Du, S., A new residual a posteriori error estimates of mixed finite element methods for convection-diffusion-reaction equations, Numer. Methods Partial Differential Equations, 30, 593-624 (2014) · Zbl 1288.65159
[20] Masud, A.; Hughes, T. J.R., A stabilized mixed finite element method for Darcy flow, Comput. Methods Appl. Mech. Engrg., 191, 4341-4370 (2002) · Zbl 1015.76047
[21] Gatica, G. N., Analysis of a new augmented mixed finite element method for linear elasticity allowing \(\mathbb{RT}_0- \mathbb{P}_1- \mathbb{P}_0\) approximations, ESAIM: M2AN Math. Model. Numer. Anal., 40, 1-28 (2006)
[22] Gatica, G. N., An augmented mixed finite element method for linear elasticity with non-homogeneous Dirichlet conditions, Electron. Trans. Numer. Anal., 26, 421-438 (2007) · Zbl 1170.74049
[23] Gatica, G. N.; Márquez, A.; Meddahi, S., An augmented mixed finite element method for 3D linear elasticity problems, J. Comput. Appl. Math., 231, 526-540 (2009) · Zbl 1167.74042
[24] González, M., Stabilized dual-mixed method for the problem of linear elasticity with mixed boundary conditions, Appl. Math. Lett., 30, 1-5 (2014) · Zbl 1314.74059
[25] Barrios, T. P.; Bustinza, R.; García, G. C.; Hernández, E., On stabilized mixed methods for generalized Stokes problem based on the velocity-pseudostress formulation: A priori error estimates, Comput. Methods Appl. Mech. Engrg., 237-240, 78-87 (2012) · Zbl 1253.76053
[26] Barrios, T.; Bustinza, R.; García, G. C.; González, M., An a posteriori error estimator for a new stabilized formulation of the Brinkman problem, (Numerical Mathematics and Advanced Applications - ENUMATH 2013. Numerical Mathematics and Advanced Applications - ENUMATH 2013, Lecture Notes in Computational Science and Engineering (2015), Springer), 253-261 · Zbl 1321.76036
[27] Barrios, T. P.; Cascón, J. M.; González, M., A posteriori error analysis of an augmented mixed finite element method for Darcy flow, Comput. Methods Appl. Mech. Engrg., 283, 909-922 (2015) · Zbl 1423.76209
[28] Barrios, T. P.; Cascón, J. M.; González, M., A posteriori error estimation of a stabilized mixed finite element method for Darcy flow, (Knobloch, Petr, Boundary and Interior Layers, Computational and Asymptotic Methods BAIL 2014. Boundary and Interior Layers, Computational and Asymptotic Methods BAIL 2014, Lecture Notes in Computational Science and Engineering (2015)), 13-24
[29] González, M.; Korotov, S.; Jansson, J., A posteriori error analysis of a stabilized mixed FEM for convection-diffusion problems, Dynamical Systems, Differential Equations and Applications. 10th AIMS Conference. Dynamical Systems, Differential Equations and Applications. 10th AIMS Conference, Discrete Contin. Dyn. Syst., Suppl., 525-532 (2015) · Zbl 1335.65087
[30] Barrios, T. P.; Cascón, J. M.; González, M., Augmented mixed finite element method for the oseen problem: A priori and a posteriori error analyses, Comput. Methods Appl. Mech. Engrg., 313, 216-238 (2017) · Zbl 1439.76049
[31] Roberts, J. E.; Thomas, J.-M., Mixed and hybrid methods, (Ciarlet, P. G.; Lions, J. L., HandBook of Numerical Analysis. HandBook of Numerical Analysis, Finite Element Methods (Part 1), vol. II (1991), North-Holland: North-Holland Amsterdam) · Zbl 0875.65090
[32] Brezzi, F.; Fortin, M., Mixed and Hybrid Finite Element Methods (1991), Springer-Verlag · Zbl 0788.73002
[33] Ph. Clément, F., Approximation by finite element functions using local regularization, RAIRO Anal. numér., 9, 2, 77-84 (1975) · Zbl 0368.65008
[34] Agmon, S., Lectures on Elliptic Boundary Value Problems (1965), Princeton · Zbl 0151.20203
[35] Arnold, D. N., An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal., 19, 4, 742-760 (1982) · Zbl 0482.65060
[36] Verfürth, R., A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques (1996), Wiley-Teubner · Zbl 0853.65108
[37] Verfürth, R., A posteriori error estimation and adaptive mesh-refinement techniques, J. Comput. Appl. Math., 50, 67-83 (1994) · Zbl 0811.65089
[38] Ciarlet, P. G., The Finite Element Method for Elliptic Problems (1978), North-Holland · Zbl 0383.65058
[39] Gatica, G. N., A note on a stable Helmholtz decomposition in 3D, Appl. Anal., 99, 1110-1121 (2020) · Zbl 1437.65187
[40] Logg, A.; Mardal, K.-A.; Wells Ed, G. N., Automated solution of differential equations by the finite element method, (The FEniCS Book (2012), Springer)
[41] Plaza, A.; Carey, G. F., Local refinement of simplicial grids based on the skeleton, Appl. Numer. Math., 32, 195-218 (2000) · Zbl 0940.65142
[42] Elsheikh, A. H.; Smith, S.; Chidiac, S. E., Numerical investigation of the reliability of a posteriori error estimation for advection-diffusion equations, Commun. Numer. Methods. Eng., 24, 711-726 (2008) · Zbl 1169.76032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.