Gao, Chao; Han, Fang; Zhang, Cun-Hui On estimation of isotonic piecewise constant signals. (English) Zbl 1450.62034 Ann. Stat. 48, No. 2, 629-654 (2020). The authors consider observing an \(n\)-dimensional vector of independent entries with unknown underlying mean. The problem solved is to derive precise minimax rates of the parametric space. They claim that this rate can be achieved by using least-squares procedures, the so-called reduced isotonic regression. They compare it with the ordinary isotonic one and prove that it can avoid overfitting the data. They also derive exact minimax rates under particular losses. Reviewer: Carlos Narciso Bouza Herrera (Habana) Cited in 14 Documents MSC: 62G08 Nonparametric regression and quantile regression 62G20 Asymptotic properties of nonparametric inference 60K35 Interacting random processes; statistical mechanics type models; percolation theory Keywords:isotonic piecewise constant function; reduced isotonic regression; iterated logarithmic dependence; adaptive estimation; oracle inequalities Software:isotone; FDRSeg; LZeroSpikeInference × Cite Format Result Cite Review PDF Full Text: DOI arXiv Euclid References: [1] Amelunxen, D., Lotz, M., McCoy, M. B. and Tropp, J. A. (2014). Living on the edge: Phase transitions in convex programs with random data. Inf. Inference 3 224-294. · Zbl 1339.90251 · doi:10.1093/imaiai/iau005 [2] Arias-Castro, E., Donoho, D. L. and Huo, X. (2005). Near-optimal detection of geometric objects by fast multiscale methods. IEEE Trans. Inform. Theory 51 2402-2425. · Zbl 1282.94014 · doi:10.1109/TIT.2005.850056 [3] Bellec, P. C. (2018). Sharp oracle inequalities for least squares estimators in shape restricted regression. Ann. Statist. 46 745-780. · Zbl 1408.62066 · doi:10.1214/17-AOS1566 [4] Bellec, P. C. and Tsybakov, A. B. (2015). Sharp oracle bounds for monotone and convex regression through aggregation. J. Mach. Learn. Res. 16 1879-1892. · Zbl 1351.62088 [5] Bickel, P. J. and Fan, J. (1996). Some problems on the estimation of unimodal densities. Statist. Sinica 6 23-45. · Zbl 0840.62038 [6] Birgé, L. (1997). Estimation of unimodal densities without smoothness assumptions. Ann. Statist. 25 970-981. · Zbl 0888.62033 · doi:10.1214/aos/1069362733 [7] Birgé, L. and Massart, P. (1993). Rates of convergence for minimum contrast estimators. Probab. Theory Related Fields 97 113-150. · Zbl 0805.62037 · doi:10.1007/BF01199316 [8] Birgé, L. and Massart, P. (2001). Gaussian model selection. J. Eur. Math. Soc. (JEMS) 3 203-268. · Zbl 1037.62001 [9] Boyarshinov, V. and Magdon-Ismail, M. (2006). Linear time isotonic and unimodal regression in the \(L_1\) and \(L_{\infty}\) norms. J. Discrete Algorithms 4 676-691. · Zbl 1108.62062 · doi:10.1016/j.jda.2005.07.001 [10] Boysen, L., Kempe, A., Liebscher, V., Munk, A. and Wittich, O. (2009). Consistencies and rates of convergence of jump-penalized least squares estimators. Ann. Statist. 37 157-183. · Zbl 1155.62034 · doi:10.1214/07-AOS558 [11] Chatterjee, S., Guntuboyina, A. and Sen, B. (2015). On risk bounds in isotonic and other shape restricted regression problems. Ann. Statist. 43 1774-1800. · Zbl 1317.62032 · doi:10.1214/15-AOS1324 [12] Chatterjee, S. and Lafferty, J. (2019). Adaptive risk bounds in unimodal regression. Bernoulli 25 1-25. · Zbl 1441.62097 · doi:10.3150/16-BEJ922 [13] Csörgő, M. and Horváth, L. (1997). Limit Theorems in Change-Point Analysis. Wiley Series in Probability and Statistics. Wiley, Chichester. · Zbl 0884.62023 [14] Donoho, D. L. and Johnstone, I. M. (1994). Minimax risk over \(l_p\)-balls for \(l_q\)-error. Probab. Theory Related Fields 99 277-303. · Zbl 0802.62006 · doi:10.1007/BF01199026 [15] Friedrich, F., Kempe, A., Liebscher, V. and Winkler, G. (2008). Complexity penalized \(M\)-estimation: Fast computation. J. Comput. Graph. Statist. 17 201-224. [16] Gao, C., Han, F. and Zhang, C.-H (2020). Supplement to “On estimation of isotonic piecewise constant signals.” https://doi.org/10.1214/18-AOS1792SUPP. [17] Groeneboom, P. and Jongbloed, G. (2014). Nonparametric Estimation Under Shape Constraints. Cambridge Series in Statistical and Probabilistic Mathematics 38. Cambridge Univ. Press, New York. · Zbl 1338.62008 [18] Groeneboom, P. and Wellner, J. A. (1992). Information Bounds and Nonparametric Maximum Likelihood Estimation. DMV Seminar 19. Birkhäuser, Basel. · Zbl 0757.62017 [19] Haiminen, N., Gionis, A. and Laasonen, K. (2008). Algorithms for unimodal segmentation with applications to unimodality detection. Knowl. Inf. Syst. 14 39-57. [20] Han, Q. and Wellner, J. A. (2016). Multivariate convex regression: Global risk bounds and adaptation. Available at arXiv:1601.06844. [21] Ibragimov, I. A. and Has’ Minskii, R. Z. (2013). Statistical Estimation: Asymptotic Theory. Springer. [22] Jewell, S. and Witten, D. (2018). Exact spike train inference via \(\ell_0\) optimization. Ann. Appl. Stat. 12 2457-2482. · Zbl 1412.62159 · doi:10.1214/18-AOAS1162 [23] Kim, A. K. H., Guntuboyina, A. and Samworth, R. J. (2018). Adaptation in log-concave density estimation. Ann. Statist. 46 2279-2306. · Zbl 1408.62062 · doi:10.1214/17-AOS1619 [24] Köllmann, C., Bornkamp, B. and Ickstadt, K. (2014). Unimodal regression using Bernstein-Schoenberg splines and penalties. Biometrics 70 783-793. · Zbl 1393.62075 · doi:10.1111/biom.12193 [25] Lehmann, E. L. and Casella, G. (1998). Theory of Point Estimation, 2nd ed. Springer Texts in Statistics. Springer, New York. · Zbl 0916.62017 [26] Li, H., Munk, A. and Sieling, H. (2016). FDR-control in multiscale change-point segmentation. Electron. J. Stat. 10 918-959. · Zbl 1338.62117 · doi:10.1214/16-EJS1131 [27] Mair, P., Hornik, K. and de Leeuw, J. (2009). Isotone optimization in R: Pool-adjacent-violators algorithm (PAVA) and active set methods. J. Stat. Softw. 32 1-24. [28] Meyer, M. and Woodroofe, M. (2000). On the degrees of freedom in shape-restricted regression. Ann. Statist. 28 1083-1104. · Zbl 1105.62340 · doi:10.1214/aos/1015956708 [29] Raskutti, G., Wainwright, M. J. and Yu, B. (2011). Minimax rates of estimation for high-dimensional linear regression over \(\ell_q\)-balls. IEEE Trans. Inform. Theory 57 6976-6994. · Zbl 1365.62276 · doi:10.1109/TIT.2011.2165799 [30] Rigollet, P. and Tsybakov, A. B. (2012). Sparse estimation by exponential weighting. Statist. Sci. 27 558-575. · Zbl 1331.62351 · doi:10.1214/12-STS393 [31] Robertson, T., Wright, F. T. and Dykstra, R. L. (1988). Order Restricted Statistical Inference. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. Wiley, Chichester. · Zbl 0645.62028 [32] Salanti, G. and Ulm, K. (2003). A nonparametric changepoint model for stratifying continuous variables under order restrictions and binary outcome. Stat. Methods Med. Res. 12 351-367. · Zbl 1121.62660 · doi:10.1191/0962280203sm338ra [33] Schell, M. J. and Singh, B. (1997). The reduced monotonic regression method. J. Amer. Statist. Assoc. 92 128-135. · Zbl 0890.62035 · doi:10.1080/01621459.1997.10473609 [34] Shoung, J.-M. and Zhang, C.-H. (2001). Least squares estimators of the mode of a unimodal regression function. Ann. Statist. 29 648-665. · Zbl 1012.62044 · doi:10.1214/aos/1009210684 [35] Silvapulle, M. J. and Sen, P. K. (2011). Constrained Statistical Inference: Order, Inequality, and Shape Constraints. Wiley. [36] Stout, Q. F. (2008). Unimodal regression via prefix isotonic regression. Comput. Statist. Data Anal. 53 289-297. · Zbl 1231.62073 · doi:10.1016/j.csda.2008.08.005 [37] Tsybakov, A. B. (2009). Introduction to Nonparametric Estimation. Springer Series in Statistics. Springer, New York. · Zbl 1176.62032 [38] Zhang, C. · Zbl 1012.62045 · doi:10.1214/aos/1021379864 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.