×

Hurst function estimation. (English) Zbl 1453.62433

The authors consider the problem to estimate the Hurst function of a multifractional Brownian motion which is observed on a regular grid. The results include a lower bound on the estimation rate and the construction of a rate optimal nonparametric estimator. The variance multiplier \(\sigma^2\) is either assumed to be known or estimated as well. The authors discuss the implementation of the estimator in details and study its performance in extensive numerical simulations.

MSC:

62G05 Nonparametric estimation
62G07 Density estimation
62G20 Asymptotic properties of nonparametric inference
62M30 Inference from spatial processes
60G22 Fractional processes, including fractional Brownian motion
62-08 Computational methods for problems pertaining to statistics

References:

[1] Bardet, J.-M. and Surgailis, D. (2013). Nonparametric estimation of the local Hurst function of multifractional Gaussian processes. Stochastic Process. Appl. 123 1004-1045. · Zbl 1257.62034 · doi:10.1016/j.spa.2012.11.009
[2] Benassi, A., Jaffard, S. and Roux, D. (1997). Elliptic Gaussian random processes. Rev. Mat. Iberoam. 13 19-90. · Zbl 0880.60053 · doi:10.4171/RMI/217
[3] Bertrand, P. R., Fhima, M. and Guillin, A. (2013). Local estimation of the Hurst index of multifractional Brownian motion by increment ratio statistic method. ESAIM Probab. Stat. 17 307-327. · Zbl 1395.62259 · doi:10.1051/ps/2011154
[4] Breuer, P. and Major, P. (1983). Central limit theorems for nonlinear functionals of Gaussian fields. J. Multivariate Anal. 13 425-441. · Zbl 0518.60023 · doi:10.1016/0047-259X(83)90019-2
[5] Coeurjolly, J.-F. (2005). Identification of multifractional Brownian motion. Bernoulli 11 987-1008. · Zbl 1098.62109 · doi:10.3150/bj/1137421637
[6] Cohen, S. (1999). From self-similarity to local self-similarity: The estimation problem. In Fractals: Theory and Applications in Engineering 3-16. Springer, London. · Zbl 0965.60073
[7] Falconer, K. J. (2002). Tangent fields and the local structure of random fields. J. Theoret. Probab. 15 731-750. · Zbl 1013.60028 · doi:10.1023/A:1016276016983
[8] Fan, J. and Gijbels, I. (1996). Local Polynomial Modelling and Its Applications. Monographs on Statistics and Applied Probability 66. CRC Press, London.
[9] Herbin, E. (2006). From \(N\) parameter fractional Brownian motions to \(N\) parameter multifractional Brownian motions. Rocky Mountain J. Math. 36 1249-1284. · Zbl 1135.60020 · doi:10.1216/rmjm/1181069415
[10] Hsing, T., Brown, T. and Thelen, B. (2016). Local intrinsic stationarity and its inference. Ann. Statist. 44 2058-2088. · Zbl 1360.62475 · doi:10.1214/15-AOS1402
[11] Lévy-Véhel, J. and Peltier, R. F. (1995). Multifractional Brownian motion: Definition and preliminary results. Rapport de Recherche de L’INRIA N2645.
[12] Loh, W.-L. (2015). Estimating the smoothness of a Gaussian random field from irregularly spaced data via higher-order quadratic variations. Ann. Statist. 43 2766-2794. · Zbl 1327.62482 · doi:10.1214/15-AOS1365
[13] Mandelbrot, B. B. and Van Ness, J. W. (1968). Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10 422-437. · Zbl 0179.47801 · doi:10.1137/1010093
[14] Nourdin, I. (2012). Selected Aspects of Fractional Brownian Motion. Bocconi & Springer Series 4. Springer, Milan. · Zbl 1274.60006
[15] Shen, J. and Hsing, T. (2020). Supplement to “Hurst function estimation.” https://doi.org/10.1214/19-AOS1825SUPP.
[16] Stein, M. L. (1999). Interpolation of Spatial Data: Some Theory for Kriging. Springer Series in Statistics. Springer, New York. · Zbl 0924.62100
[17] Stoev, S. A. and Taqqu, M. S. (2006). How rich is the class of multifractional Brownian motions? Stochastic Process. Appl. 116 200-221. · Zbl 1094.60024 · doi:10.1016/j.spa.2005.09.007
[18] Taqqu, M. S. (1974/75). Weak convergence to fractional Brownian motion and to the Rosenblatt process. Z. Wahrsch. Verw. Gebiete 31 287-302. · Zbl 0303.60033 · doi:10.1007/BF00532868
[19] Tsybakov, A.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.