Xi, Haokai; Yang, Fan; Yin, Jun Convergence of eigenvector empirical spectral distribution of sample covariance matrices. (English) Zbl 1447.15033 Ann. Stat. 48, No. 2, 953-982 (2020). Summary: The eigenvector empirical spectral distribution (VESD) is a useful tool in studying the limiting behavior of eigenvalues and eigenvectors of covariance matrices. In this paper, we study the convergence rate of the VESD of sample covariance matrices to the deformed Marčenko-Pastur (MP) distribution. Consider sample covariance matrices of the form \(\Sigma^{1/2}XX^*\Sigma^{1/2} \), where \(X=(x_{ij})\) is an \(M\times N\) random matrix whose entries are independent random variables with mean zero and variance \(N^{-1} \), and \(\Sigma\) is a deterministic positive-definite matrix. We prove that the Kolmogorov distance between the expected VESD and the deformed MP distribution is bounded by \(N^{-1+\epsilon }\) for any fixed \(\epsilon >0\), provided that the entries \(\sqrt{N}x_{ij}\) have uniformly bounded 6th moments and \(|N/M-1|\ge \tau\) for some constant \(\tau >0\). This result improves the previous one obtained in [N. Xia et al., Ann. Stat. 41, No. 5, 2572–2607 (2013; Zbl 1285.15018)], which gave the convergence rate \(O(N^{-1/2})\) assuming i.i.d. \(X\) entries, bounded 10th moment, \( \Sigma =I\) and \(M< N\). Moreover, we also prove that under the finite \(8\) th moment assumption, the convergence rate of the VESD is \(O(N^{-1/2+\epsilon })\) almost surely for any fixed \(\epsilon >0\), which improves the previous bound \(N^{-1/4+\epsilon }\) in [N. Xia et al., Ann. Stat. 41, No. 5, 2572–2607 (2013; Zbl 1285.15018)]. Cited in 11 Documents MSC: 15B52 Random matrices (algebraic aspects) 60B20 Random matrices (probabilistic aspects) 62E20 Asymptotic distribution theory in statistics Keywords:sample covariance matrix; empirical spectral distribution; eigenvector empirical spectral distribution; Marčenko-Pastur distribution Citations:Zbl 1285.15018 × Cite Format Result Cite Review PDF Full Text: DOI arXiv Euclid References: [1] Anderson, T. W. (1963). Asymptotic theory for principal component analysis. Ann. Math. Stat. 34 122-148. · Zbl 0202.49504 · doi:10.1214/aoms/1177704248 [2] Bai, Z. and Silverstein, J. W. (2006). Spectral Analysis of Large Dimensional Random Matrices, Mathematics Monograph Series 2. Science Press, Beijing. · Zbl 1196.60002 [3] Bai, Z. D. (1993). Convergence rate of expected spectral distributions of large random matrices. II. Sample covariance matrices. Ann. Probab. 21 649-672. · Zbl 0779.60025 · doi:10.1214/aop/1176989262 [4] Bai, Z. D., Miao, B. Q. and Pan, G. M. (2007). On asymptotics of eigenvectors of large sample covariance matrix. Ann. Probab. 35 1532-1572. · Zbl 1162.15012 · doi:10.1214/009117906000001079 [5] Bai, Z. D. and Silverstein, J. W. (1998). No eigenvalues outside the support of the limiting spectral distribution of large-dimensional sample covariance matrices. Ann. Probab. 26 316-345. · Zbl 0937.60017 · doi:10.1214/aop/1022855421 [6] Bao, Z., Pan, G. and Zhou, W. (2015). Universality for the largest eigenvalue of sample covariance matrices with general population. Ann. Statist. 43 382-421. · Zbl 1408.60006 · doi:10.1214/14-AOS1281 [7] Bao, Z. G., Pan, G. M. and Zhou, W. (2013). Local density of the spectrum on the edge for sample covariance matrices with general population. Preprint. [8] Bianchi, P., Debbah, M., Maida, M. and Najim, J. (2011). Performance of statistical tests for single-source detection using random matrix theory. IEEE Trans. Inform. Theory 57 2400-2419. · Zbl 1366.94140 · doi:10.1109/TIT.2011.2111710 [9] Bloemendal, A., Erdős, L., Knowles, A., Yau, H.-T. and Yin, J. (2014). Isotropic local laws for sample covariance and generalized Wigner matrices. Electron. J. Probab. 19 no. 33, 53. · Zbl 1288.15044 · doi:10.1214/EJP.v19-3054 [10] Bun, J., Allez, R., Bouchaud, J.-P. and Potters, M. (2016). Rotational invariant estimator for general noisy matrices. IEEE Trans. Inform. Theory 62 7475-7490. · Zbl 1359.94066 · doi:10.1109/TIT.2016.2616132 [11] Cai, T. T., Ma, Z. and Wu, Y. (2013). Sparse PCA: Optimal rates and adaptive estimation. Ann. Statist. 41 3074-3110. · Zbl 1288.62099 · doi:10.1214/13-AOS1178 [12] Davies, E. B. (1995). The functional calculus. J. Lond. Math. Soc. (2) 52 166-176. · Zbl 0858.47012 · doi:10.1112/jlms/52.1.166 [13] Dieng, M. and Tracy, C. A. (2011). Application of random matrix theory to multivariate statistics. In Random Matrices, Random Processes and Integrable Systems. CRM Ser. Math. Phys. 443-507. Springer, New York. · Zbl 06073565 [14] Ding, X. and Yang, F. (2018). A necessary and sufficient condition for edge universality at the largest singular values of covariance matrices. Ann. Appl. Probab. 28 1679-1738. · Zbl 1426.15052 · doi:10.1214/17-AAP1341 [15] El Karoui, N. (2007). Tracy-Widom limit for the largest eigenvalue of a large class of complex sample covariance matrices. Ann. Probab. 35 663-714. · Zbl 1117.60020 · doi:10.1214/009117906000000917 [16] El Karoui, N. (2009). Concentration of measure and spectra of random matrices: Applications to correlation matrices, elliptical distributions and beyond. Ann. Appl. Probab. 19 2362-2405. · Zbl 1255.62156 · doi:10.1214/08-AAP548 [17] Erdős, L., Knowles, A. and Yau, H.-T. (2013). Averaging fluctuations in resolvents of random band matrices. Ann. Henri Poincaré 14 1837-1926. · Zbl 1296.15020 · doi:10.1007/s00023-013-0235-y [18] Erdős, L., Yau, H.-T. and Yin, J. (2011). Universality for generalized Wigner matrices with Bernoulli distribution. J. Comb. 2 15-81. · Zbl 1235.15029 · doi:10.4310/JOC.2011.v2.n1.a2 [19] Fama, E. and French, K. (1992). The cross-section of expected stock returns. J. Finance 47 427-465. [20] Fan, J., Fan, Y. and Lv, J. (2008). High dimensional covariance matrix estimation using a factor model. J. Econometrics 147 186-197. · Zbl 1429.62185 · doi:10.1016/j.jeconom.2008.09.017 [21] Fan, J., Liao, Y. and Liu, H. (2016). An overview of the estimation of large covariance and precision matrices. Econom. J. 19 C1-C32. · Zbl 1521.62083 [22] Götze, F. and Tikhomirov, A. (2004). Rate of convergence in probability to the Marchenko-Pastur law. Bernoulli 10 503-548. · Zbl 1049.60018 · doi:10.3150/bj/1089206408 [23] Hachem, W., Hardy, A. and Najim, J. (2016). Large complex correlated Wishart matrices: Fluctuations and asymptotic independence at the edges. Ann. Probab. 44 2264-2348. · Zbl 1346.15035 · doi:10.1214/15-AOP1022 [24] Johnson, R. A. and Wichern, D. W. (2007). Applied Multivariate Statistical Analysis, 6th ed. Pearson Prentice Hall, Upper Saddle River, NJ. · Zbl 1269.62044 [25] Johnstone, I. M. (2001). On the distribution of the largest eigenvalue in principal components analysis. Ann. Statist. 29 295-327. · Zbl 1016.62078 · doi:10.1214/aos/1009210544 [26] Johnstone, I. M. (2007). High dimensional statistical inference and random matrices. In International Congress of Mathematicians. Vol. I 307-333. Eur. Math. Soc., Zürich. · Zbl 1120.62033 [27] Johnstone, I. M. (2008). Multivariate analysis and Jacobi ensembles: Largest eigenvalue, Tracy-Widom limits and rates of convergence. Ann. Statist. 36 2638-2716. · Zbl 1284.62320 · doi:10.1214/08-AOS605 [28] Kay, S. M. (1998). Fundamentals of Statistical Signal Processing, Volume 2: Detection Theory. Prentice Hall, New York. [29] Knowles, A. and Yin, J. (2013). The isotropic semicircle law and deformation of Wigner matrices. Comm. Pure Appl. Math. 66 1663-1750. · Zbl 1290.60004 · doi:10.1002/cpa.21450 [30] Knowles, A. and Yin, J. (2017). Anisotropic local laws for random matrices. Probab. Theory Related Fields 169 257-352. · Zbl 1382.15051 · doi:10.1007/s00440-016-0730-4 [31] Ledoit, O. and Péché, S. (2011). Eigenvectors of some large sample covariance matrix ensembles. Probab. Theory Related Fields 151 233-264. · Zbl 1229.60009 · doi:10.1007/s00440-010-0298-3 [32] Lee, J. O. and Schnelli, K. (2016). Tracy-Widom distribution for the largest eigenvalue of real sample covariance matrices with general population. Ann. Appl. Probab. 26 3786-3839. · Zbl 1384.60026 · doi:10.1214/16-AAP1193 [33] Lee, J. O. and Yin, J. (2014). A necessary and sufficient condition for edge universality of Wigner matrices. Duke Math. J. 163 117-173. · Zbl 1296.60007 · doi:10.1215/00127094-2414767 [34] Ma, Z. (2013). Sparse principal component analysis and iterative thresholding. Ann. Statist. 41 772-801. · Zbl 1267.62074 · doi:10.1214/13-AOS1097 [35] Marčenko, V. A. and Pastur, L. A. (1967). Distribution of eigenvalues for some sets of random matrices. Math. USSR, Sb. 1 457. · Zbl 0162.22501 [36] Nadakuditi, R. R. and Edelman, A. (2008). Sample eigenvalue based detection of high-dimensional signals in white noise using relatively few samples. IEEE Trans. Signal Process. 56 2625-2638. · Zbl 1390.94567 · doi:10.1109/TSP.2008.917356 [37] Nadakuditi, R. R. and Silverstein, J. W. (2010). Fundamental limit of sample generalized eigenvalue based detection of signals in noise using relatively few signal-bearing and noise-only samples. IEEE J. Sel. Top. Signal Process. 4 468-480. [38] Onatski, A. (2008). The Tracy-Widom limit for the largest eigenvalues of singular complex Wishart matrices. Ann. Appl. Probab. 18 470-490. · Zbl 1141.60009 · doi:10.1214/07-AAP454 [39] Onatski, A. (2009). Testing hypotheses about the numbers of factors in large factor models. Econometrica 77 1447-1479. · Zbl 1182.62180 · doi:10.3982/ECTA6964 [40] Patterson, N., Price, A. L. and Reich, D. (2006). Population structure and eigenanalysis. PLoS Genet. 2 1-20. [41] Paul, D. (2007). Asymptotics of sample eigenstructure for a large dimensional spiked covariance model. Statist. Sinica 17 1617-1642. · Zbl 1134.62029 [42] Paul, D. and Silverstein, J. W. (2009). No eigenvalues outside the support of the limiting empirical spectral distribution of a separable covariance matrix. J. Multivariate Anal. 100 37-57. · Zbl 1154.60320 · doi:10.1016/j.jmva.2008.03.010 [43] Pillai, N. S. and Yin, J. (2014). Universality of covariance matrices. Ann. Appl. Probab. 24 935-1001. · Zbl 1296.15021 · doi:10.1214/13-AAP939 [44] Silverstein, J. W. (1989). On the eigenvectors of large-dimensional sample covariance matrices. J. Multivariate Anal. 30 1-16. · Zbl 0678.60011 · doi:10.1016/0047-259X(89)90084-5 [45] Silverstein, J. W. (1990). Weak convergence of random functions defined by the eigenvectors of sample covariance matrices. Ann. Probab. 18 1174-1194. · Zbl 0708.62051 · doi:10.1214/aop/1176990741 [46] Silverstein, J. W. and Bai, Z. D. (1995). On the empirical distribution of eigenvalues of a class of large-dimensional random matrices. J. Multivariate Anal. 54 175-192. · Zbl 0833.60038 · doi:10.1006/jmva.1995.1051 [47] Silverstein, J. W. and Choi, S.-I. (1995). Analysis of the limiting spectral distribution of large-dimensional random matrices. J. Multivariate Anal. 54 295-309. · Zbl 0872.60013 · doi:10.1006/jmva.1995.1058 [48] Wang, L. and Paul, D. (2014). Limiting spectral distribution of renormalized separable sample covariance matrices when \(p/n\to 0\). J. Multivariate Anal. 126 25-52. · Zbl 1286.60009 [49] Xi, H., Yang, F. and Yin, J. (2017). Local circular law for the product of a deterministic matrix with a random matrix. Electron. J. Probab. 22 Paper No. 60, 77. · Zbl 1373.15058 · doi:10.1214/17-EJP76 [50] Xi, H., Yang, F. and Yin, J. (2019). Supplement to “Convergence of eigenvector empirical spectral distribution of sample covariance matrices.” https://doi.org/10.1214/19-AOS1832SUPP. [51] Xia, N. and Bai, Z. (2019). Convergence rate of eigenvector empirical spectral distribution of large Wigner matrices. Statist. Papers 60 633-665. · Zbl 1420.62235 · doi:10.1007/s00362-016-0860-x [52] Xia, N., Qin, Y. and Bai, Z. (2013). Convergence rates of eigenvector empirical spectral distribution of large dimensional sample covariance matrix. Ann. Statist. 41 2572-2607. · Zbl 1285.15018 · doi:10.1214/13-AOS1154 [53] Yang, F. · Zbl 1436.15042 · doi:10.1214/19-EJP381 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.