×

D-optimal designs for multinomial logistic models. (English) Zbl 1453.62606

While there is a sizable and growing literature for optimal designs with binary response, the literature for experiments with more than two categories is limited. In the statistical literature, four kinds of multinomial logit models have been used: baseline-category, cumulative, adjacent-categories and continuation-ratio logit models. Combined with three odd assumptions (proportional, nonproportional, and partial proportional odds), 12 different models for multinomial responses can be generated.
The authors work in a general framework which covers all of the 12 models and they present results on (mainly \(D\)-) optimal designs. First they derive the Fisher information matrix and necessary and sufficient conditions for their positive definiteness. Furthermore, they develop efficient algorithms for searching local \(D\)-optimal designs.
The authors show that the optimal designs for multinomial responses with three or more categories are remarkably different from the ones for binary responses, in two major aspects:
(i)
the required minimum number of experimental settings is less than the number of parameters and
(ii)
even among minimally supported designs, unlike \(D\)-optimal designs for binary responses, uniform allocation often is not \(D\)-optimal (and can be quite inefficient).
The authors illustrate the results extensively by two real experiments.

MSC:

62K05 Optimal statistical designs
62J12 Generalized linear models (logistic models)
62B10 Statistical aspects of information-theoretic topics

Software:

ordinal; VGAMdata; dobson; SAS

References:

[1] Agresti, A. (2010). Analysis of Ordinal Categorical Data, 2nd ed. Wiley Series in Probability and Statistics. Wiley, Hoboken, NJ. · Zbl 1263.62007
[2] Agresti, A. (2013). Categorical Data Analysis, 3rd ed. Wiley, New York. · Zbl 1281.62022
[3] Atkinson, A. C., Donev, A. N. and Tobias, R. D. (2007). Optimum Experimental Designs, with SAS. Oxford Statistical Science Series 34. Oxford Univ. Press, Oxford. · Zbl 1183.62129
[4] Bu, X., Majumdar, D. and Yang, J. (2020). Supplement to “D-optimal designs for multinomial logistic models.” https://doi.org/10.1214/19-AOS1834SUPP.
[5] Chaloner, K. and Verdinelli, I. (1995). Bayesian experimental design: A review. Statist. Sci. 10 273-304. · Zbl 0955.62617 · doi:10.1214/ss/1177009939
[6] Christensen, R. (2019). Cumulative link models for ordinal regression with the R package ordinal. Available at https://cran.r-project.org/web/packages/ordinal/vignettes/clm_article.pdf.
[7] Chuang-Stein, C. and Agresti, A. (1997). Tutorial in biostatistics—a review of tests for detecting a monotone dose-response relationship with ordinal response data. Stat. Med. 16 2599-2618.
[8] Dobson, A. J. and Barnett, A. G. (2018). An Introduction to Generalized Linear Models, 4th ed. Texts in Statistical Science Series. CRC Press, Boca Raton, FL. · Zbl 1412.62001
[9] Fedorov, V. V. (1972). Theory of Optimal Experiments. Academic Press, New York.
[10] Fedorov, V. V. and Leonov, S. L. (2014). Optimal Design for Nonlinear Response Models. Chapman & Hall/CRC Biostatistics Series. CRC Press, Boca Raton, FL. · Zbl 1373.62001
[11] Glonek, G. and McCullagh, P. (1995). Multivariate logistic models. J. Roy. Statist. Soc. Ser. B 57 533-546. · Zbl 0827.62059 · doi:10.1111/j.2517-6161.1995.tb02046.x
[12] Itepan, N. (1995). Aumento do periodo de aceitabilidade de pupas de Musca domestica L., 1758 (Diptera: Muscidae), irradiadas com raios gama, como hospedeiras de parasitoides (Hymenoptera: Pteromalidae). Master’s thesis, Centro de Energia Nuclear na Agricultura/USP, Piracicaba, SP, Brazil.
[13] Jennett, B. and Bond, M. (1975). Assessment of outcome after severe brain damage. Lancet 305 480-484.
[14] Khuri, A. I., Mukherjee, B., Sinha, B. K. and Ghosh, M. (2006). Design issues for generalized linear models: A review. Statist. Sci. 21 376-399. · Zbl 1246.62168 · doi:10.1214/088342306000000105
[15] Kiefer, J. (1974). General equivalence theory for optimum designs (approximate theory). Ann. Statist. 2 849-879. · Zbl 0291.62093 · doi:10.1214/aos/1176342810
[16] Lall, R., Campbell, M., Walters, S. and Morgan, K. (2002). A review of ordinal regression models applied on health-related quality of life assessments. Stat. Methods Med. Res. 11 49-67. · Zbl 1121.62627 · doi:10.1191/0962280202sm271ra
[17] Liu, I. and Agresti, A. (2005). The analysis of ordered categorical data: An overview and a survey of recent developments. TEST 14 1-73. · Zbl 1069.62057 · doi:10.1007/BF02595397
[18] McCullagh, P. (1980). Regression models for ordinal data. J. Roy. Statist. Soc. Ser. B 42 109-142. · Zbl 0483.62056 · doi:10.1111/j.2517-6161.1980.tb01109.x
[19] McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models. Monographs on Statistics and Applied Probability. CRC Press, London. · Zbl 0744.62098
[20] Perevozskaya, I., Rosenberger, W. F. and Haines, L. M. (2003). Optimal design for the proportional odds model. Canad. J. Statist. 31 225-235. · Zbl 1039.62070 · doi:10.2307/3316068
[21] Peterson, B. and Harrell, F. (1990). Partial proportional odds models for ordinal response variables. J. R. Stat. Soc. Ser. C. Appl. Stat. 39 205-217. · Zbl 0707.62154
[22] Pukelsheim, F. (1993). Optimal Design of Experiments. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. Wiley, New York. · Zbl 0834.62068
[23] Randall, J. (1989). The analysis of sensory data by generalised linear model. Biom. J. 31 781-793.
[24] Seber, G. A. F. (2008). A Matrix Handbook for Statisticians. Wiley Series in Probability and Statistics. Wiley Interscience, Hoboken, NJ. · Zbl 1143.15001
[25] Silvey, S. D. (1980). Optimal Design. CRC Press, London. · Zbl 0468.62070
[26] Stoica, P. and Marzetta, T. L. (2001). Parameter estimation problems with singular information matrices. IEEE Trans. Signal Process. 49 87-90. · Zbl 1369.62012 · doi:10.1109/78.890346
[27] Stokes, M., Davis, C. and Koch, G. (2012). Categorical Data Analysis Using SAS, 3rd ed. SAS Institute, Cary, NC.
[28] Stufken, J. and Yang, M. (2012). Optimal designs for generalized linear models. In Design and Analysis of Experiments. Volume 3: Special Designs and Applications (K. Hinkelmann, ed.). Wiley Ser. Probab. Stat. 137-164. Wiley, Hoboken, NJ.
[29] Wu, F.-C. (2008). Simultaneous optimization of robust design with quantitative and ordinal data. Int. J. Ind. Eng. Theory, Appl. Pract. 5 231-238.
[30] Yang, M., Biedermann, S. and Tang, E. (2013). On optimal designs for nonlinear models: A general and efficient algorithm. J. Amer. Statist. Assoc. 108 1411-1420. · Zbl 1283.62161 · doi:10.1080/01621459.2013.806268
[31] Yang, J. and Mandal, A. (2015). D-optimal factorial designs under generalized linear models. Comm. Statist. Simulation Comput. 44 2264-2277. · Zbl 1474.62285 · doi:10.1080/03610918.2013.815773
[32] Yang, J., Mandal, A. and Majumdar, D. (2016). Optimal designs for \(2^k\) factorial experiments with binary response. Statist. Sinica 26 385-411. · Zbl 1419.62198
[33] Yang, J., Tong, L. and Mandal, A. (2017). D-optimal designs with ordered categorical data. Statist. Sinica 27 1879-1902. · Zbl 1392.62233
[34] Yee, T. W. (2015). Vector Generalized Linear and Additive Models: With an Implementation in R. Springer Series in Statistics. Springer, New York. · Zbl 1380.62006
[35] Zocchi, S. · Zbl 1059.62580 · doi:10.1111/j.0006-341X.1999.00437.x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.