×

A unified study of nonparametric inference for monotone functions. (English) Zbl 1448.62042

Summary: The problem of nonparametric inference on a monotone function has been extensively studied in many particular cases. Estimators considered have often been of so-called Grenander type, being representable as the left derivative of the greatest convex minorant or least concave majorant of an estimator of a primitive function. In this paper, we provide general conditions for consistency and pointwise convergence in distribution of a class of generalized Grenander-type estimators of a monotone function. This broad class allows the minorization or majoratization operation to be performed on a data-dependent transformation of the domain, possibly yielding benefits in practice. Additionally, we provide simpler conditions and more concrete distributional theory in the important case that the primitive estimator and data-dependent transformation function are asymptotically linear. We use our general results in the context of various well-studied problems, and show that we readily recover classical results established separately in each case. More importantly, we show that our results allow us to tackle more challenging problems involving parameters for which the use of flexible learning strategies appears necessary. In particular, we study inference on monotone density and hazard functions using informatively right-censored data, extending the classical work on independent censoring, and on a covariate-marginalized conditional mean function, extending the classical work on monotone regression functions.

MSC:

62G05 Nonparametric estimation
62G20 Asymptotic properties of nonparametric inference
62G07 Density estimation
62G08 Nonparametric regression and quantile regression
62N02 Estimation in survival analysis and censored data

Software:

SuperLearner
PDFBibTeX XMLCite
Full Text: DOI arXiv Euclid

References:

[1] Anevski, D. and Hössjer, O. (2006). A general asymptotic scheme for inference under order restrictions. Ann. Statist. 34 1874-1930. · Zbl 1246.62019 · doi:10.1214/009053606000000443
[2] Anevski, D. and Soulier, P. (2011). Monotone spectral density estimation. Ann. Statist. 39 418-438. · Zbl 1209.62206 · doi:10.1214/10-AOS804
[3] Bagchi, P., Banerjee, M. and Stoev, S. A. (2016). Inference for monotone functions under short- and long-range dependence: Confidence intervals and new universal limits. J. Amer. Statist. Assoc. 111 1634-1647.
[4] Balabdaoui, F., Jankowski, H., Pavlides, M., Seregin, A. and Wellner, J. (2011). On the Grenander estimator at zero. Statist. Sinica 21 873-899. · Zbl 1214.62037 · doi:10.5705/ss.2011.038a
[5] Banerjee, M. (2005a). Likelihood ratio tests under local alternatives in regular semiparametric models. Statist. Sinica 15 635-644. · Zbl 1086.62027
[6] Banerjee, M. (2005b). Likelihood ratio tests under local and fixed alternatives in monotone function problems. Scand. J. Stat. 32 507-525. · Zbl 1091.62030 · doi:10.1111/j.1467-9469.2005.00458.x
[7] Banerjee, M. (2007). Likelihood based inference for monotone response models. Ann. Statist. 35 931-956. · Zbl 1133.62328 · doi:10.1214/009053606000001578
[8] Banerjee, M. and Wellner, J. A. (2001). Likelihood ratio tests for monotone functions. Ann. Statist. 29 1699-1731. · Zbl 1043.62037 · doi:10.1214/aos/1015345959
[9] Beare, B. K. and Fang, Z. (2017). Weak convergence of the least concave majorant of estimators for a concave distribution function. Electron. J. Stat. 11 3841-3870. · Zbl 1390.62078 · doi:10.1214/17-EJS1349
[10] Brunk, H. D. (1970). Estimation of isotonic regression. In Nonparametric Techniques in Statistical Inference (Proc. Sympos., Indiana Univ., Bloomington, Ind., 1969) 177-197. Cambridge Univ. Press, London.
[11] Carolan, C. and Dykstra, R. (1999). Asymptotic behavior of the Grenander estimator at density flat regions. Canad. J. Statist. 27 557-566. · Zbl 0949.62035 · doi:10.2307/3316111
[12] Dedecker, J., Merlevède, F. and Peligrad, M. (2011). Invariance principles for linear processes with application to isotonic regression. Bernoulli 17 88-113. · Zbl 1284.60068 · doi:10.3150/10-BEJ273
[13] Durot, C. (2007). On the \(\Bbb{L}_p \)-error of monotonicity constrained estimators. Ann. Statist. 35 1080-1104. · Zbl 1129.62024 · doi:10.1214/009053606000001497
[14] Durot, C., Groeneboom, P. and Lopuhaä, H. P. (2013). Testing equality of functions under monotonicity constraints. J. Nonparametr. Stat. 25 939-970. · Zbl 1416.62244 · doi:10.1080/10485252.2013.826356
[15] Durot, C., Kulikov, V. N. and Lopuhaä, H. P. (2012). The limit distribution of the \(L_{\infty}\)-error of Grenander-type estimators. Ann. Statist. 40 1578-1608. · Zbl 1257.62017
[16] Durot, C. and Lopuhaä, H. P. (2014). A Kiefer-Wolfowitz type of result in a general setting, with an application to smooth monotone estimation. Electron. J. Stat. 8 2479-2513. · Zbl 1309.62065 · doi:10.1214/14-EJS958
[17] Gill, R. D., Van Der Laan, M. J. and Robins, J. M. (1997). Coarsening at random: Characterizations, conjectures, counter-examples. In Proceedings of the First Seattle Symposium in Biostatistics (D. Y. Lin, ed.) 255-294. Springer, New York. · Zbl 0918.62003
[18] Grenander, U. (1956). On the theory of mortality measurement. II. Scand. Actuar. J. 39 125-153. · Zbl 0077.33715
[19] Groeneboom, P. (1985). Estimating a monotone density. In Proceedings of the Berkeley Conference in Honor of Jerzy Neyman and Jack Kiefer, Vol. II (Berkeley, Calif., 1983). Wadsworth Statist./Probab. Ser. 539-555. Wadsworth, Belmont, CA. · Zbl 1373.62144
[20] Groeneboom, P. and Jongbloed, G. (2014). Nonparametric Estimation Under Shape Constraints: Estimators, Algorithms and Asymptotics. Cambridge Series in Statistical and Probabilistic Mathematics 38. Cambridge Univ. Press, New York. · Zbl 1338.62008
[21] Groeneboom, P. and Jongbloed, G. (2015). Nonparametric confidence intervals for monotone functions. Ann. Statist. 43 2019-2054. · Zbl 1323.62040 · doi:10.1214/15-AOS1335
[22] Groeneboom, P., Jongbloed, G. and Witte, B. I. (2010). Maximum smoothed likelihood estimation and smoothed maximum likelihood estimation in the current status model. Ann. Statist. 38 352-387. · Zbl 1181.62157 · doi:10.1214/09-AOS721
[23] Groeneboom, P. and Wellner, J. A. (2001). Computing Chernoff’s distribution. J. Comput. Graph. Statist. 10 388-400.
[24] Heitjan, D. F. and Rubin, D. B. (1991). Ignorability and coarse data. Ann. Statist. 19 2244-2253. · Zbl 0745.62004 · doi:10.1214/aos/1176348396
[25] Huang, J. and Wellner, J. A. (1995). Estimation of a monotone density or monotone hazard under random censoring. Scand. J. Stat. 22 3-33. · Zbl 0827.62032
[26] Huang, Y. and Zhang, C.-H. (1994). Estimating a monotone density from censored observations. Ann. Statist. 22 1256-1274. · Zbl 0821.62016 · doi:10.1214/aos/1176325628
[27] Hubbard, A. E., van der Laan, M. J. and Robins, J. M. (2000). Nonparametric locally efficient estimation of the treatment specific survival distribution with right censored data and covariates in observational studies. In Statistical Models in Epidemiology, the Environment, and Clinical Trials (Minneapolis, MN, 1997). IMA Vol. Math. Appl. 116 135-177. Springer, New York. · Zbl 0983.62077
[28] Kim, J. and Pollard, D. (1990). Cube root asymptotics. Ann. Statist. 18 191-219. · Zbl 0703.62063 · doi:10.1214/aos/1176347498
[29] Kosorok, M. R. (2008). Bootstrapping the Grenander estimator. In Beyond Parametrics in Interdisciplinary Research: Festschrift in Honor of Professor Pranab K. Sen (N. Balakrishnan, E. A. Peña and M. J. Silvapulle, eds.). Collections 1 282-292. Institute of Mathematical Statistics. · Zbl 1159.62002
[30] Kulikov, V. N. and Lopuhaä, H. P. (2006). The behavior of the NPMLE of a decreasing density near the boundaries of the support. Ann. Statist. 34 742-768. · Zbl 1092.62044 · doi:10.1214/009053606000000100
[31] Laslett, G. M. (1982). The survival curve under monotone density constraints with applications to two-dimensional line segment processes. Biometrika 69 153-160.
[32] Leurgans, S. (1982). Asymptotic distributions of slope-of-greatest-convex-minorant estimators. Ann. Statist. 10 287-296. · Zbl 0484.62033 · doi:10.1214/aos/1176345711
[33] Lopuhaä, H. P. and Musta, E. (2018a). A central limit theorem for the Hellinger loss of Grenander-type estimators. Stat. Neerl. To appear. https://doi.org/10.1111/stan.12153. · Zbl 1407.62354
[34] Lopuhaä, H. P. and Musta, E. (2018b). The distance between a naive cumulative estimator and its least concave majorant. Statist. Probab. Lett. 139 119-128. · Zbl 1390.60090 · doi:10.1016/j.spl.2018.04.001
[35] Mammen, E. (1991). Estimating a smooth monotone regression function. Ann. Statist. 19 724-740. · Zbl 0737.62038 · doi:10.1214/aos/1176348117
[36] McNichols, D. T. and Padgett, W. J. (1982). Maximum likelihood estimation of unimodal and decreasing densities based on arbitrarily right-censored data. Comm. Statist. Theory Methods 11 2259-2270. · Zbl 0508.62034 · doi:10.1080/03610928208828387
[37] Mukerjee, H. (1988). Monotone nonparameteric regression. Ann. Statist. 16 741-750. · Zbl 0647.62042 · doi:10.1214/aos/1176350832
[38] Pfanzagl, J. (1982). Contributions to a General Asymptotic Statistical Theory. Lecture Notes in Statistics 13. Springer, New York. · Zbl 0512.62001
[39] Prakasa Rao, B. L. S. (1969). Estimation of a unimodal density. Sankhya A 31 23-36. · Zbl 0181.45901
[40] Prakasa Rao, B. L. S. (1970). Estimation for distributions with monotone failure rate. Ann. Math. Stat. 41 507-519. · Zbl 0214.45903 · doi:10.1214/aoms/1177697091
[41] Scharfstein, D. O. and Robins, J. M. (2002). Estimation of the failure time distribution in the presence of informative censoring. Biometrika 89 617-634. · Zbl 1036.62110 · doi:10.1093/biomet/89.3.617
[42] Sen, B., Banerjee, M. and Woodroofe, M. (2010). Inconsistency of bootstrap: The Grenander estimator. Ann. Statist. 38 1953-1977. · Zbl 1202.62057 · doi:10.1214/09-AOS777
[43] Tsiatis, A. A. (2006). Semiparametric Theory and Missing Data. Springer Series in Statistics. Springer, New York. · Zbl 1105.62002
[44] van der Laan, M. J., Polley, E. C. and Hubbard, A. E. (2007). Super learner. Stat. Appl. Genet. Mol. Biol. 6 Art. 25, 23. · Zbl 1166.62387 · doi:10.2202/1544-6115.1309
[45] van der Laan, M. J. and Robins, J. M. (2003). Unified Methods for Censored Longitudinal Data and Causality. Springer, New York. · Zbl 1013.62034
[46] van der Laan, M. J. and Rose, S. (2011). Targeted Learning: Causal Inference for Observational and Experimental Data. Springer Series in Statistics. Springer, New York.
[47] van der Vaart, A. and van der Laan, M. J. (2006). Estimating a survival distribution with current status data and high-dimensional covariates. Int. J. Biostat. 2 Art. 9, 42.
[48] van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical Processes: With Applications to Statistics. Springer Series in Statistics. Springer, New York. · Zbl 0862.60002
[49] Westling, T. and Carone, M. (2020). Supplement to “A unified study of nonparametric inference for monotone functions.” https://doi.org/10.1214/19-AOS1835SUPP.
[50] Woodroofe, M. and Sun, J. (1993). A penalized maximum likelihood estimate of \(f(0+)\) when \(f\) is nonincreasing. Statist. Sinica 3 501-515. · Zbl 0822.62020
[51] Wright, F. T. (1981). The asymptotic behavior of monotone regression estimates. Ann. Statist. 9 443-448. · Zbl 0471.62062 · doi:10.1214/aos/1176345411
[52] Zeng, D. · Zbl 1047.62092 · doi:10.1214/009053604000000508
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.