zbMATH — the first resource for mathematics

Hermitian completely positive matrices. (English) Zbl 1448.15049
Summary: In this paper, we introduce the Hermitian completely positive (HCP) matrix, which has a Hermitian completely positive (HCP) decomposition with all real and imaginary parts of the decomposition vectors being nonnegative. Some properties of the Hermitian completely positive matrix are given. A semidefinite algorithm is also proposed for checking whether a Hermitian matrix is HCP or not. If a matrix is not HCP, a certificate for it can be obtained; if it is, an HCP decomposition can be obtained.
15B57 Hermitian, skew-Hermitian, and related matrices
15A23 Factorization of matrices
44A60 Moment problems
90C22 Semidefinite programming
GloptiPoly; SeDuMi
Full Text: DOI
[1] Bandeira, A. S.; Boumal, N.; Singer, A., Tightness of the maximum likelihood semidefinite relaxation for angular synchronization, Math. Program., Ser. A, 163, 145-167 (2017) · Zbl 1365.90188
[2] Berman, A.; Shaked-Monderer, N., Completely Positive Matrices (2003), World Scientific · Zbl 1030.15022
[3] Bertsekas, D. P., Non-linear Programming (1995), Athena Scientific: Athena Scientific Belmont, MA · Zbl 0935.90037
[4] Bomze, I. M.; Dür, M.; deKlerk, E.; Roos, C.; Quist, A. J.; Terlaky, T., On copositive programming and standard quadratic optimization problems, J. Glob. Optim., 18, 301-320 (2000) · Zbl 0970.90057
[5] Bomze, I. M.; Schachinger, W.; Uchida, G., Think co(mpletely)positive! Matrix properties, examples and a clustered bibliography on copositive optimization, J. Glob. Optim., 52, 423-445 (2012) · Zbl 1268.90051
[6] Burer, S., On the copositive representation of binary and continuous nonconvex quadratic programs, Math. Program., Ser. A, 120, 479-495 (2009) · Zbl 1180.90234
[7] Burer, S., Copositive programming, (Anjos, M. F.; Lasserre, J. B., Handbook on Semi-Definite, Conic and Polynomial Optimization. Handbook on Semi-Definite, Conic and Polynomial Optimization, International Series in Operations Research & Management Science, vol. 166 (2012), Springer: Springer New York), 201-218 · Zbl 1334.90098
[8] Curto, R.; Fialkow, L., Truncated K-moment problems in several variables, J. Oper. Theory, 54, 189-226 (2005) · Zbl 1119.47304
[9] Demmel, J., Applied Numerical Linear Algebra (1997), SIAM: SIAM Philadelphia · Zbl 0879.65017
[10] Dickinson, P. J.; Gijben, L., On the computational complexity of membership problems for the completely positive cone and its dual, Comput. Optim. Appl., 57, 403-415 (2014) · Zbl 1330.90103
[11] Golub, G. H.; Van Loan, C. F., Matrix Computations (1996), The Johns Hopkins University Press · Zbl 0865.65009
[12] Henrion, D.; Lasserre, J., Detecting global optimality and extracting solutions in GloptiPoly, (Positive Polynomials in Control. Positive Polynomials in Control, Lecture Notes in Control and Inform. Sci., vol. 312 (2005), Springer: Springer Berlin), 293-310 · Zbl 1119.93301
[13] Henrion, D.; Lasserre, J.; Loefberg, J., GloptiPoly 3: moments, optimization and semidefinite programming, Optim. Methods Softw., 24, 761-779 (2009) · Zbl 1178.90277
[14] Jaldán, J., Detection for multiple input multiple output channels (2006), School of Electrical Engineering, KTH: School of Electrical Engineering, KTH Stockholm, Sweden, PhD thesis
[15] Lasserre, J. B., Global optimization with polynomials and the problem of moments, SIAM J. Optim., 11, 796-817 (2001) · Zbl 1010.90061
[16] Lasserre, J. B., Moments, Positive Polynomials and Their Applications (2009), Imperial College Press
[17] Laurent, M., Sums of squares, moment matrices and optimization over polynomials, (Putinar, M.; Sullivant, S., Emerging Applications of Algebraic Geometry. Emerging Applications of Algebraic Geometry, IMA Volumes in Mathematics and Its Applications, vol. 149 (2009), Springer), 157-270 · Zbl 1163.13021
[18] Murty, K. G.; Kabadi, S. N., Some NP-complete problems in quadratic and nonlinear programming, Math. Program., Ser. B, 39, 117-129 (1987) · Zbl 0637.90078
[19] Nie, J., Certifying convergence of Lasserre’s hierarchy via flat truncation, Math. Program., Ser. A, 142, 485-510 (2013) · Zbl 1305.65151
[20] Nie, J., The \(\mathcal{A} \)-truncated K-moment problem, Found. Comput. Math., 14, 1243-1276 (2014) · Zbl 1331.65172
[21] Nie, J., Linear optimization with cones of moments and nonnegative polynomials, Math. Program., Ser. B, 153, 247-274 (2015) · Zbl 1327.65113
[22] Nie, J., Optimality conditions and finite convergence of Lasserre’s hierarchy, Math. Program., Ser. A, 146, 97-121 (2014) · Zbl 1300.65041
[23] Peña, J.; Vera, J. C.; Zuluaga, L. F., Completely positive reformulations for polynomial optimization, Math. Program., Ser. B, 151, 405-431 (2015) · Zbl 1328.90114
[24] Pu, W.; Liu, Y.-F.; Yan, J.; Zhou, S.; Liu, H.; Luo, Z.-Q., Optimal estimation of sensor biases for asynchronous multi-sensor data fusion, Math. Program., Ser. B, 170, 357-386 (2018) · Zbl 1391.90580
[25] Putinar, M., Positive polynomials on compact semi-algebraic sets, Indiana Univ. Math. J., 42, 969-984 (1993) · Zbl 0796.12002
[26] Reznick, B., On Hilbert’s Construction of Positive Polynomials (2007), University of Illinois at Urbana-Champaign, Technical report
[27] Soltanalian, M.; Stoica, P., Designing unimodular codes via quadratic optimization, IEEE Trans. Signal Process., 62, 1221-1234 (2014) · Zbl 1394.94967
[28] Sturm, J. F., SeDuMi 1.02: a MATLAB toolbox for optimization over symmetric cones, Optim. Methods Softw., 11 & 12, 625-653 (1999) · Zbl 0973.90526
[29] Waldspurger, I.; Aspremont, A.; Mallat, S., Phase recovery, MaxCut and complex semidefinite programming, Math. Program., Ser. A, 149, 47-81 (2015) · Zbl 1329.94018
[30] Zhang, S.; Huang, Y., Complex quadratic optimization and semidefinite programming, SIAM J. Optim., 16, 871-890 (2006) · Zbl 1113.90115
[31] Zhou, A.; Fan, J.; Wang, Q., Completely positive tensors in complex field, Sci. China Math., 63, 1219-1234 (2020)
[32] Žilinskas, J.; Dür, M., Depth-first simplicial partition for copositivity detection, with an application to MaxClique, Optim. Methods Softw., 26, 499-510 (2011) · Zbl 1226.65037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.