zbMATH — the first resource for mathematics

Frobenius powers. (English) Zbl 1455.13010
Summary: This article extends the notion of a Frobenius power of an ideal in prime characteristic to allow arbitrary nonnegative real exponents. These generalized Frobenius powers are closely related to test ideals in prime characteristic, and multiplier ideals over fields of characteristic zero. For instance, like these well-known families of ideals, Frobenius powers also give rise to jumping exponents that we call critical Frobenius exponents. In fact, the Frobenius powers of a principal ideal coincide with its test ideals, but Frobenius powers appear to be a more refined measure of singularities than test ideals in general. Herein, we develop the theory of Frobenius powers in regular domains, and apply it to study singularities, especially those of generic hypersurfaces. These applications illustrate one way in which multiplier ideals behave more like Frobenius powers than like test ideals.
13A35 Characteristic \(p\) methods (Frobenius endomorphism) and reduction to characteristic \(p\); tight closure
14B05 Singularities in algebraic geometry
14G17 Positive characteristic ground fields in algebraic geometry
Full Text: DOI
[1] Bela, E., Boix, A.F., Bruce, J., Ellingson, D., Hernández, D.J., Kadyrsizova, Z., Katzman, M., Malec, S., Mastroeni, M., Mostafazadehfard, M., Robinson, M., Schwede, K., Smolkin, D., Teixeira, P., Witt, E.E.: TestIdeals: a package for calculations of singularities in positive characteristic. Version 1.01. https://github.com/Macaulay2/M2/tree/master/M2/Macaulay2/packages/TestIdeals
[2] Blickle, M., Lazarsfeld, R.: An informal introduction to multiplier ideals, Trends in Commutative Algebra, Math. Sci. Res. Inst. Publ., vol. 51, pp. 87-114. Cambridge Univ. Press, Cambridge (2004) · Zbl 1084.14015
[3] Blickle, M.; Mustaţă, M.; Smith, KE, Discreteness and rationality of \(F\)-thresholds, Mich. Math. J., 57, 43-61 (2008) · Zbl 1177.13013
[4] Blickle, M.; Mustaţă, M.; Smith, KE, \(F\)-thresholds of hypersurfaces, Trans. Am. Math. Soc., 361, 12, 6549-6566 (2009) · Zbl 1193.13003
[5] Boix, AF; Hernández, DJ; Kadyrsizova, Z.; Katzman, M.; Malec, S.; Robinson, M.; Schwede, K.; Smolkin, D.; Teixeira, P.; Witt, EE, The TestIdeals package for Macaulay2, J. Softw. Algebra Geom., 9, 2, 89-110 (2019) · Zbl 1442.13001
[6] De Stefani, A.; Núñez-Betancourt, L.; Pérez, F., On the existence of \(F\)-thresholds and related limits, Trans. Am. Math. Soc., 370, 9, 6629-6650 (2018) · Zbl 1405.13010
[7] Dickson, LE, Theorems on the residues of multinomial coefficients with respect to a prime modulus, Q. J. Pure Appl. Math., 33, 378-384 (1902) · JFM 33.0203.02
[8] Grayson, D.R., Stillman, M.E.: Macaulay2, a software system for research in algebraic geometry. http://www.math.uiuc.edu/Macaulay2/
[9] Hara, N.; Yoshida, K-I, A generalization of tight closure and multiplier ideals, Trans. Am. Math. Soc., 355, 8, 3143-3174 (2003) · Zbl 1028.13003
[10] Hernández, DJ, \(F\)-purity of hypersurfaces, Math. Res. Lett., 19, 2, 389-401 (2012) · Zbl 1291.13009
[11] Hernández, DJ, \(F\)-invariants of diagonal hypersurfaces, Proc. Am. Math. Soc., 143, 1, 87-104 (2015) · Zbl 1314.13010
[12] Hernández, DJ; Núñez-Betancourt, L.; Witt, EE, Local \(\mathfrak{m} \)-adic constancy of \(F\)-pure thresholds and test ideals, Math. Proc. Cambridge Philos. Soc., 164, 2, 285-295 (2018) · Zbl 1394.13008
[13] Hernández, DJ; Teixeira, P.; Witt, EE, Frobenius powers of some monomial ideals, J. Pure Appl. Algebra, 224, 1, 66-85 (2020) · Zbl 1453.13020
[14] Hochster, M., Huneke, C.: Tight closure in equal characteristic zero (1999). http://www.math.lsa.umich.edu/ hochster/tcz.pdf
[15] Howald, J., Multiplier ideals of monomial ideals, Trans. Am. Math. Soc., 353, 7, 2665-2671 (2001) · Zbl 0979.13026
[16] Howald, J.: Multiplier ideals of sufficiently general polynomials (2003). arXiv:math/0303203
[17] Lazarsfeld, R., Positivity in Algebraic Geometry II (2004), Berlin: Springer, Berlin · Zbl 1093.14500
[18] Leykin, A., Constructibility of the set of polynomials with a fixed Bernstein-Sato polynomial: an algorithmic approach, J. Symb. Comput., 32, 6, 663-675 (2001) · Zbl 1035.16018
[19] Lyubeznik, G., On Bernstein-Sato polynomials, Proc. Am. Math. Soc., 125, 7, 1941-1944 (1997) · Zbl 0878.13018
[20] Mustaţă, M., Takagi, S., Watanabe, K.-I.: F-thresholds and Bernstein-Sato polynomials. In: European Congress of Mathematics (Zürich), Eur. Math. Soc., pp. 341-364 (2005) · Zbl 1092.32014
[21] Smith, KE, The multiplier ideal is a universal test ideal, Commun. Algebra, 28, 12, 5915-5929 (2000) · Zbl 0979.13007
[22] Takagi, S.; Watanabe, K-I, On F-pure thresholds, J. Algebra, 282, 1, 278-297 (2004) · Zbl 1082.13004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.