×

zbMATH — the first resource for mathematics

Crossover in spreading behavior due to memory in population dynamics. (English) Zbl 1448.92243
Summary: The reaction-diffusion equation is one of the possible ways for modeling animal movement, where the reactive part stands for the population growth and the diffusive part for random dispersal of the population. However, a reaction-diffusion model may not represent all aspects of the spatial dynamics, because of the existence of distinct mechanisms that can affect the movement, such as spatial memory, which results in a bias for one direction of dispersal. This bias is modeled through an advective term on an advection-reaction-diffusion equation. Thus, considering the effects of memory on the population spread, we propose a model composed of a coupled partial differential equation system with two equations: one for the population dynamics and the other for the memory density distribution. For the population growth, we use either the exponential or logistic growth function. The analytic approach shows that for the exponential and logistic growth, the minimum traveling wave speeds are the same with or without memory dynamics in which the variation of memory is infinitesimal. From the numerical analysis, we explore how our parameters, memory, growth rate, and carrying capacity, affect the population redistribution. The combinations of these parameters result in a redistribution pattern of the population associated with either diffusive or superdiffusive and imply the dispersal is faster than the diffusion. Further, in the parameter-space defined by memory and growth rate, we have shown that memory is a factor that switches the dynamics between two spreading behaviors, one faster than the other.
MSC:
92D25 Population dynamics (general)
35K57 Reaction-diffusion equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Huijser, M. P.; Fairbank, E. R.; Camel-Means, W.; Graham, J.; Watson, V.; Basting, P.; Becker, D., Effectiveness of short sections of wildlife fencing and crossing structures along highways in reducing wildlife-vehicle collisions and providing safe crossing opportunities for large mammals, Biol. Conserv., 197, 61-68 (2016)
[2] 20140198-20140198
[3] McCarthy, M. A.; Thompson, C. J.; Garnett, S. T., Optimal investment in conservation of species, J. Appl. Ecol., 45, 5, 1428-1435 (2008)
[4] Hebblewhite, M.; Haydon, D. T., Distinguishing technology from biology: a critical review of the use of GPS telemetry data in ecology, Philos. Trans. R Soc. B, 365, 1550, 2303-2312 (2010)
[5] van Strien, M. J.; Grêt-Regamey, A., How is habitat connectivity affected by settlement and road network configurations? results from simulating coupled habitat and human networks, Ecol. Modell., 342, 186-198 (2016)
[6] Tracey, J. A.; Zhu, J.; Boydston, E.; Lyren, L.; Fisher, R. N.; Crooks, K. R., Mapping behavioral landscapes for animal movement: a finite mixture modeling approach, Ecol. Appl., 23, 3, 654-669 (2013)
[7] Tryjanowski, P.; Sparks, T. H.; Kuźniak, S.; Czechowski, P.; Jerzak, L., Bird migration advances more strongly in urban environments, PLoS ONE, 8, 5, e63482 (2013)
[8] Murray, J. D., Vignettes from the field of mathematical biology: the application of mathematics to biology and medicine, Interface Focus, 2, 4, 397-406 (2012)
[9] Grover, J. P., Sink or swim? vertical movement and nutrient storage in phytoplankton, J. Theor. Biol., 432, 38-48 (2017) · Zbl 1393.92057
[10] Rolandsen, C. M.; Solberg, E. J.; Sæther, B.-E.; Moorter, B. V.; Herfindal, I.; Bjørneraas, K., On fitness and partial migration in a large herbivore-migratory moose have higher reproductive performance than residents, Oikos, 126, 4, 547-555 (2017)
[11] Bunnefeld, N.; Börger, L.; van Moorter, B.; Rolandsen, C. M.; Dettki, H.; Solberg, E. J.; Ericsson, G., A model-driven approach to quantify migration patterns: individual, regional and yearly differences, J. Anim. Ecol., 80, 2, 466-476 (2011)
[12] Robinson, B. G.; Hebblewhite, M.; Merrill, E. H., Are migrant and resident elk (cervus elaphus) exposed to similar forage and predation risk on their sympatric winter range?, Oecologia, 164, 1, 265-275 (2010)
[13] Schlägel, U. E.; Lewis, M. A., Detecting effects of spatial memory and dynamic information on animal movement decisions, Methods Ecol. Evol., 5, 11, 1236-1246 (2014)
[14] Berbert, J. M.; Lewis, M. A., Superdiffusivity due to resource depletion in random searches, Ecol. Complex., 33, 41-48 (2018)
[15] Vincenot, C. E.; Mazzoleni, S.; Moriya, K.; Cartenì, F.; Giannino, F., How spatial resource distribution and memory impact foraging success: a hybrid model and mechanistic index, Ecol. Complex., 22, 139-151 (2015)
[16] Roshier, D. A.; Doerr, V. A.; Doerr, E. D., Animal movement in dynamic landscapes: interaction between behavioural strategies and resource distributions, Oecologia, 156, 2, 465-477 (2008)
[17] Bestley, S.; Raymond, B.; Gales, N.; Harcourt, R.; Hindell, M. A.; Jonsen, I.; Nicol, S.; Péron, C.; Sumner, M.; Weimerskirch, H., Predicting krill swarm characteristics important for marine predators foraging off east antarctica, Ecography (2017)
[18] Buffoni, G.; Groppi, M.; Soresina, C., Dynamics of predator-prey models with a strong allee effect on the prey and predator-dependent trophic functions, Nonlinear Anal. Real World Appl., 30, 143-169 (2016) · Zbl 1366.92100
[19] Alves, M. T.; Hilker, F. M., Hunting cooperation and allee effects in predators, J. Theor. Biol., 419, 13-22 (2017) · Zbl 1370.92151
[20] Potts, J. R.; Lewis, M. A., How memory of direct animal interactions can lead to territorial pattern formation, J. R Soc. Interface, 13, 118, 20160059 (2016)
[21] Polansky, L.; Kilian, W.; Wittemyer, G., Elucidating the significance of spatial memory on movement decisions by african savannah elephants using state-space models, Proc. R Soc. Lond. B, 282, 1805, 20143042 (2015)
[22] Bracis, C.; Gurarie, E.; Van Moorter, B.; Goodwin, R. A., Memory effects on movement behavior in animal foraging, PLoS ONE, 10, 8, e0136057 (2015)
[23] W.F. Fagan, M.A. Lewis, M. Auger-Méthé, T. Avgar, S. Benhamou, G. Breed, L. LaDage, U.E. Schlägel, W.-w. Tang, Y.P. Papastamatiou, J. Forester, T. Mueller, Spatial memory and animal movement, Ecol. Lett. 16(10) 1316-1329. 10.1111/ele.12165.
[24] Janmaat, K. R.; Ban, S. D.; Boesch, C., Chimpanzees use long-term spatial memory to monitor large fruit trees and remember feeding experiences across seasons, Anim. Behav., 86, 6, 1183-1205 (2013)
[25] Harris, R. A.; Graham, P.; Collett, T. S., Visual cues for the retrieval of landmark memories by navigating wood ants, Curr. Biol., 17, 2, 93-102 (2007)
[26] Hunt, E. R.; Kendall, C.; Stanbury, E.; Sendova-Franks, A. B.; Franks, N. R., Complementary landmarks facilitate ant navigation, Behav. Processes (2018)
[27] Stout, J. C.; Goulson, D., The use of conspecific and interspecific scent marks by foraging bumblebees and honeybees, Anim. Behav., 62, 1, 183-189 (2001)
[28] Song, Y.; Wu, S.; Wang, H., Spatiotemporal dynamics in the single population model with memory-based diffusion and nonlocal effect, J. Differ. Equ., 267, 11, 6316-6351 (2019) · Zbl 1423.35027
[29] Shi, J.; Wang, C.; Wang, H., Diffusive spatial movement with memory and maturation delays, Nonlinearity, 32, 9, 3188-3208 (2019) · Zbl 1419.35114
[30] Shi, J.; Wang, C.; Wang, H.; Yan, X., Diffusive spatial movement with memory, J. Dyn. Diff. Eqs. (2019)
[31] Fisher, R. A., The wave of advance of advantageous genes, Ann. Eugen., 7, 4, 355-369 (1937) · JFM 63.1111.04
[32] Kolmogorov, A.; Petrovskii, I.; Piskunov, N., A study of the equation of diffusion with increase in the quantity of matter, and its application to a biological problem, Bjul. Moskovskogo Gos. Univ, 1, 7, 1-26 (1937)
[33] Skellam, J. G., Random dispersal in theoretical populations, Biometrika, 38, 1/2, 196-218 (1951) · Zbl 0043.14401
[34] Kondo, S.; Miura, T., Reaction-diffusion model as a framework for understanding biological pattern formation, Science, 329, 5999, 1616-1620 (2010) · Zbl 1226.35077
[35] Law, R.; Murrell, D. J.; Dieckmann, U., Population growth in space and time: spatial logistic equations, Ecology, 84, 1, 252-262 (2003)
[36] Gates, C.; Larter, N., Growth and dispersal of an erupting large herbivore population in northern canada: the Mackenzie wood bison (bison bison athabascae), Arctic, 231-238 (1990)
[37] Kot, M.; Lewis, M. A.; van den Driessche, P., Dispersal data and the spread of invading organisms, Ecology, 77, 7, 2027-2042 (1996)
[38] Atangana, A., On the new fractional derivative and application to nonlinear fisher’s reaction-diffusion equation, Appl. Math. Comput., 273, 948-956 (2016) · Zbl 1410.35272
[39] Chiuchiù, D.; López-Suárez, M.; Neri, I.; Diamantini, M. C.; Gammaitoni, L., Cost of remembering a bit of information, Phys. Rev. A, 97, 5 (2018)
[40] Demaerel, T.; Maes, C., The asymptotic speed of reaction fronts in active reaction-diffusion systems, J. Phys. A: Math. Theor., 52, 24, 245001 (2019)
[41] Sherratt, J. A., A comparison of two numerical methods for oscillatory reaction-diffusion systems, Appl. Math. Lett., 10, 2, 1-5 (1997) · Zbl 0883.65071
[42] Sherratt, J. A., Numerical continuation of boundaries in parameter space between stable and unstable periodic travelling wave (wavetrain) solutions of partial differential equations, Adv. Comput. Math., 1-18 (2013) · Zbl 1271.65132
[43] Taylor-King, J. P.; van Loon, E. E.; Rosser, G.; Chapman, S. J., From birds to bacteria: generalised velocity jump processes with resting states, Bull. Math. Biol., 77, 7, 1213-1236 (2015) · Zbl 1355.92147
[44] Ovaskainen, O., Analytical and numerical tools for diffusion-based movement models, Theor. Popul. Biol., 73, 2, 198-211 (2008) · Zbl 1208.92088
[45] Hanks, E. M.; Johnson, D. S.; Hooten, M. B., Reflected stochastic differential equation models for constrained animal movement, J. Agric. Biol. Environ. Stat., 22, 3, 353-372 (2017) · Zbl 1388.62342
[46] Shampine, L. F.; Reichelt, M. W., The matlab ode suite, SIAM J. Sci. Comput., 18, 1, 1-22 (1997) · Zbl 0868.65040
[47] ben Avraham, D., Diffusion in disordered media, Chemometr. Intell. Lab. Syst., 10, 1-2, 117-122 (1991)
[48] Laca, E., Spatial memory and food searching mechanisms of cattle, J. Range Manag., 51, 4, 370-378 (1998)
[49] Berbert, J. M.; Fagan, W. F., How the interplay between individual spatial memory and landscape persistence can generate population distribution patterns, Ecol. Complexity, 12, 1-12 (2012)
[50] Sibly, R. M.; Brown, J. H., Mammal reproductive strategies driven by offspring mortality-size relationships, Am. Nat., 173, 6, E185-E199 (2009)
[51] Capellini, I.; Venditti, C.; Barton, R. A., Placentation and maternal investment in mammals, Am. Nat., 177, 1, 86-98 (2011)
[52] Fagan, W. F., Migrating whales depend on memory to exploit reliable resources, Proc. Natl. Acad. Sci., 116, 12, 5217-5219 (2019)
[53] Merkle, J. A.; Sawyer, H.; Monteith, K. L.; Dwinnell, S. P.H.; Fralick, G. L.; Kauffman, M. J., Spatial memory shapes migration and its benefits: evidence from a large herbivore, Ecol. Lett., 22, 11, 1797-1805 (2019)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.