×

zbMATH — the first resource for mathematics

Epi-regularization of risk measures. (English) Zbl 1455.90115
Summary: Uncertainty pervades virtually every branch of science and engineering, and in many disciplines, the underlying phenomena can be modeled by partial differential equations (PDEs) with uncertain or random inputs. This work is motivated by risk-averse stochastic programming problems constrained by PDEs. These problems are posed in infinite dimensions, which leads to a significant increase in the scale of the (discretized) problem. In order to handle the inherent nonsmoothness of, for example, coherent risk measures and to exploit existing solution techniques for smooth, PDE-constrained optimization problems, we propose a variational smoothing technique called epigraphical (epi-)regularization. We investigate the effects of epi-regularization on the axioms of coherency and prove differentiability of the smoothed risk measures. In addition, we demonstrate variational convergence of the epi-regularized risk measures and prove the consistency of minimizers and first-order stationary points for the approximate risk-averse optimization problem. We conclude with numerical experiments confirming our theoretical results.

MSC:
90C15 Stochastic programming
Software:
PLCP; ROL; SQPlab
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] [1] Alexanderian A, Petra N, Stadler G, Ghattas O (2017) Mean-variance risk-averse optimal control of systems governed by PDEs with random parameter fields using quadratic approximations. SIAM/ASA J. Uncertainty Quantification 5(1):1166-1192.Crossref, Google Scholar · Zbl 1391.93289
[2] [2] Artzner P, Delbaen F, Eber JM, Heath D (1999) Coherent measures of risk. Math. Finance 9(3):203-228.Crossref, Google Scholar · Zbl 0980.91042
[3] [3] Attouch H (1984) Variational Convergence for Functions and Operators, Applicable Mathematics Series (Pitman Advanced Publishing Program, Boston).Google Scholar
[4] [4] Attouch H (1996) Viscosity solutions of minimization problems. SIAM J. Optim. 6(3):769-806.Crossref, Google Scholar · Zbl 0859.65065
[5] [5] Attouch H, Wets RJB (1989) Epigraphical analysis. Annales de l’institut Henri Poincaré (C) Analyse non linéaire S6:73-100.Google Scholar
[6] [6] Attouch H, Buttazzo G, Michaille G (2006) Variational Analysis in Sobolev and BV Spaces, vol. 6 of MPS/SIAM Series on Optimization (SIAM, Philadelphia).Google Scholar
[7] [7] Bäcker F, Bratzke D, Groche P, Ulbrich S (2015) Time-varying process control for stringer sheet forming by a deterministic derivative-free optimization approach. Internat. J. Adv. Manufacturing Tech. 80(5):817-828.Crossref, Google Scholar
[8] [8] Baillon JB, Haddad G (1977) Quelque propriétés des opérateurs angle-bornés et n-cycliquement monotones. Israel J. Math. 26(2):137-150.Crossref, Google Scholar · Zbl 0352.47023
[9] [9] Bauschke HH, Combettes PL (2010) The Baillon-Haddad theorem revisited. J. Convex Anal. 17(3):781-787.Google Scholar · Zbl 1208.47046
[10] [10] Ben-Tal A, Teboulle M (1986) Expected utility, penalty functions, and duality in stochastic nonlinear programming. Management Sci. 32(11):1445-1466.Link, Google Scholar · Zbl 0625.90064
[11] [11] Ben-Tal A, Teboulle M (2007) An old-new concept of convex risk measures: The optimized certainty equivalent. Math. Finance 17(3):449-476.Crossref, Google Scholar · Zbl 1186.91116
[12] [12] Bonfiglio L, Perdikaris P, Brizzolara S, Karniadakis G (2017) A multi-fidelity framework for investigating the performance of super-cavitating hydrofoils under uncertain flow conditions. 19th AIAA Non-Deterministic Approaches Conf. (American Institute of Aeronautics and Astronautics, Reston, VA).Google Scholar
[13] [13] Bonnans JF, Shapiro A (2000) Perturbation Analysis of Optimization Problems (Springer Verlag, New York).Crossref, Google Scholar
[14] [14] Bonnans JF, Gilbert JC, Lemaréchal C, Sagastizábal CA (2006) Numerical Optimization: Theoretical and Practical Aspects, Universitext (Springer-Verlag, Berlin Heidelberg).Google Scholar
[15] [15] Borzì A, von Winckel G (2011) A POD framework to determine robust controls in PDE optimization. Comput. Vision Sci. 14:91-103.Crossref, Google Scholar · Zbl 1242.93025
[16] [16] Borzì A, Schulz V, Schillings C, von Winckel G (2010) On the treatment of distributed uncertainties in PDE constrained optimization. GAMM-Mitt. 33(2):230-246.Crossref, Google Scholar · Zbl 1207.49033
[17] [17] Burke JV, Hoheisel T (2017) Epi-convergence properties of smoothing by infimal convolution. Set-Valued Variational Anal. 25(1):1-23.Crossref, Google Scholar · Zbl 1365.49015
[18] [18] Chen P, Quarteroni A (2014) Weighted reduced basis method for stochastic optimal control problems with elliptic PDE constraint. SIAM/ASA J. Uncertainty Quantification 2(1):364-396.Crossref, Google Scholar · Zbl 1309.35182
[19] [19] Chen P, Quarteroni A, Rozza G (2013) Stochastic optimal robin boundary control problems of advection-dominated elliptic equations. SIAM J. Numer. Anal. 51(5):2700-2722.Crossref, Google Scholar · Zbl 1281.49015
[20] [20] Clarke FH (1983) Optimization and Nonsmooth Analysis, Canadian Mathematical Society Series of Monographs and Advanced Texts (John Wiley & Sons, New York).Google Scholar
[21] [21] Conn AR, Gould NIM, Toint PL (2000) Trust-Region Methods (SIAM, Philadelphia).Crossref, Google Scholar · Zbl 0958.65071
[22] [22] Dal Maso G (1993) An Introduction to Γ-Convergence. Progress in Nonlinear Differential Equations and Their Applications (Birkhäuser, Boston).Google Scholar · Zbl 0816.49001
[23] [23] Dentcheva D, Ruszczyński A (2003) Optimization with stochastic dominance constraints. SIAM J. Optim. 14(2):548-566.Crossref, Google Scholar · Zbl 1055.90055
[24] [24] Durlofsky LJ, Chen Y (2012) Uncertainty quantification for subsurface flow problems using coarse-scale models. Graham IG, Hou TY, Lakkis O, Scheichl R, eds. Numerical analysis of multiscale problems, Lecture Notes in Computational Science and Engineering, vol. 83 (Springer, Berlin Heidelberg), 163-202.Crossref, Google Scholar · Zbl 1245.86003
[25] [25] Ekeland I, Temam R (1999) Convex Analysis and Variational Problems, Classics in Applied Mathematics, vol. 28 (SIAM, Philadelphia).Crossref, Google Scholar · Zbl 0939.49002
[26] [26] Folland GB (1999) Real Analysis. Modern Techniques and Their Applications, Pure and Applied Mathematics, 2nd ed. (John Wiley & Sons, New York).Google Scholar
[27] [27] Föllmer H, Schied A (2002) Convex measures of risk and trading constraints. Finance Stochastics 6(4):429-447.Crossref, Google Scholar · Zbl 1041.91039
[28] [28] Goldberg H, Kampowsky W, Tröltzsch F (1992) On NEYMTSKIJ operators in Lp-spaces of abstract functions. Mathematische Nachrichten 155(1):127-140.Crossref, Google Scholar · Zbl 0760.47031
[29] [29] Hille E, Phillips RS (1957) Functional analysis and semi-groups. American Mathematical Society Colloquium Publications, vol. 31, rev. ed. (American Mathematical Society, Providence, RI).Google Scholar
[30] [30] Hintermüller M, Hinze M (2009) Moreau-Yosida regularization in state constrained elliptic control problems: Error estimates and parameter adjustment. SIAM J. Numer. Anal. 47(3):1666-1683.Crossref, Google Scholar · Zbl 1191.49036
[31] [31] Hintermüller M, Kunisch K (2006) Feasible and noninterior path-following in constrained minimization with low multiplier regularity. SIAM J. Control Optim. 45(4):1198-1221.Crossref, Google Scholar · Zbl 1121.49030
[32] [32] Hintermüller M, Kunisch K (2006) Path-following methods for a class of constrained minimization problems in function space. SIAM J. Optim. 17(1):159-187.Crossref, Google Scholar · Zbl 1137.49028
[33] [33] Kouri DP (2014) A multilevel stochastic collocation algorithm for optimization of PDEs with uncertain coefficients. SIAM/ASA J. Uncertainty Quantification 2(1):55-81.Crossref, Google Scholar · Zbl 1307.49026
[34] [34] Kouri DP (2017) A measure approximation for distributionally robust PDE-constrained optimization problems. SIAM J. Numer. Anal. 55(6):3147-3172.Google Scholar · Zbl 1381.49021
[35] [35] Kouri DP, Surowiec TM (2016) Risk-averse PDE-constrained optimization using the conditional value-at-risk. SIAM J. Optim. 26(1):365-396.Google Scholar · Zbl 1337.49049
[36] [36] Kouri DP, Surowiec TM (2017) PDE-constrained optimization under uncertainty. SIAM SIAG/OPT Views News 25(2):1-8.Google Scholar
[37] [37] Kouri DP, Surowiec TM (2018) Existence and optimality conditions for risk-averse PDE-constrained optimization. SIAM/ASA J. Uncertainty Quantification 6(2):787-815.Google Scholar · Zbl 1393.49002
[38] [38] Kouri DP, von Winckel G, Ridzal D (2017) ROL: Rapid optimization library. Accessed October 10, 2017, https://trilinos.org/packages/rol.Google Scholar
[39] [39] Kouri DP, Heinkenschloss M, Ridzal D, van Bloemen Waanders BG (2013) A trust-region algorithm with adaptive stochastic collocation for PDE optimization under uncertainty. SIAM J. Sci. Comput. 35(4):A1847-A1879.Crossref, Google Scholar · Zbl 1275.49047
[40] [40] Kouri DP, Heinkenschloss M, Ridzal D, van Bloemen Waanders BG (2014) Inexact objective function evaluations in a trust-region algorithm for PDE-constrained optimization under uncertainty. SIAM J. Sci. Comput. 36(6):A3011-A3029.Crossref, Google Scholar · Zbl 1312.49033
[41] [41] Lax PD (2002) Functional Analysis (John Wiley & Sons, New-York).Google Scholar
[42] [42] Lions JL (1971) Optimal Control of Systems Governed by Partial Differential Equations, Grundlehren der mathematischen Wissenschaften, vol. 170 (Springer-Verlag, Berlin Heidelberg).Google Scholar
[43] [43] Mäkelä MM, Neittaanmäki P (1992) Nonsmooth Optimization (World Scientific, River Edge, NJ).Google Scholar
[44] [44] Mason L, Baxter J, Bartlett P, Frean M (1999) Boosting algorithms as gradient descent in function space. Proc. 12th Internat. Conf. Neural Inform. Processing Systems, NIPS’99 (MIT Press, Cambridge, MA), 512-518.Google Scholar
[45] [45] Mordukhovich BS (2006) Variational Analysis and Generalized Differentiation I: Basic Theory, Grundlehren der mathematischen Wissenschaften (Springer, Berlin Heidelberg).Crossref, Google Scholar · Zbl 1100.49002
[46] [46] Petra N, Zhu H, Stadler G, Hughes TJR, Ghattas O (2012) An inexact Gauss-Newton method for inversion of basal sliding and rheology parameters in a nonlinear Stokes ice sheet model. J. Glaciology 58(211):889-903.Crossref, Google Scholar
[47] [47] Prékopa A (2003) Probabilistic programming. Ruszczynski A, Shapiro A, eds. Stochastic programming, Handbooks in Operations Research and Management Science, vol. 10 (Elsevier, Amsterdam), 267-35.Google Scholar
[48] [48] Rockafellar RT, Uryasev S (2013) The fundamental risk quadrangle in risk management, optimization and statistical estimation. Surveys Oper. Res. Management Sci. 18(12):33-53.Google Scholar
[49] [49] Rockafellar RT, Wets RJB (1998) Variational Analysis, A Series of Comprehensive Studies in Mathematics, vol. 317 (Springer-Verlag, Berlin Heidelberg).Google Scholar
[50] [50] Ruszczyński A, Shapiro A (2006) Optimization of convex risk functions. Math. Oper. Res. 31(3):433-452.Link, Google Scholar · Zbl 1278.90283
[51] [51] Ruszczyński A, Shapiro A (2007) Corrigendum to: “Optimization of convex risk functions” [Math. Oper. Res. (2006) 31(3):, 433-452]. Math. Oper. Res. 32(2):496.Google Scholar
[52] [52] Schramm H, Zowe J (1992) A version of the bundle idea for minimizing a nonsmooth function: Conceptual idea, convergence analysis, numerical results. SIAM J. Optim. 2(1):121-152.Google Scholar · Zbl 0761.90090
[53] [53] Schulz V, Schillings C (2009) On the nature and treatment of uncertainties in aerodynamic design. AIAA J. 47(3):646-654.Crossref, Google Scholar
[54] [54] Shapiro A, Ahmed S (2004) On a class of minimax stochastic programs. SIAM J. Optim. 14(4):1237-1249.Crossref, Google Scholar · Zbl 1073.90027
[55] [55] Shapiro A, Kleywegt A (2002) Minimax analysis of stochastic problems. Optim. Methods Software 17(3):523-542.Crossref, Google Scholar · Zbl 1040.90030
[56] [56] Shapiro A, Dentcheva D, Ruszczynski A (2014) Lectures on Stochastic Programming: Modeling and Theory, 2nd ed. MOS-SIAM Series on Optimization (SIAM, Philadelphia).Google Scholar
[57] [57] Shor NZ (1985) Minimization Methods for Non-differentiable Functions (Springer-Verlag, New York).Crossref, Google Scholar
[58] [58] Stadler G, Gurnis M, Burstedde C, Wilcox LC, Alisic L, Ghattas O (2010) The dynamics of plate tectonics and mantle flow: From local to global scales. Science 329(5995):1033-1038.Google Scholar
[59] [59] Strömberg T (1996) The operation of infimal convolution (Instytut Matematyczny Polskiej Akademi Nauk, Warszawa, Poland).Google Scholar
[60] [60] Tartakovsky DM, Guadagnini A, Riva M (2003) Stochastic averaging of nonlinear flows in heterogeneous porous media. J. Fluid Mech. 492:47-62.Crossref, Google Scholar · Zbl 1063.76648
[61] [61] Wang X, · Zbl 1365.90182
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.