Perret-Gentil, Corentin Roots of \(L\)-functions of characters over function fields, generic linear independence and biases. (English) Zbl 1459.11228 Algebra Number Theory 14, No. 5, 1291-1329 (2020). Summary: We first show joint uniform distribution of values of Kloosterman sums or Birch sums among all extensions of a finite field \(\mathbb{F}_q\), for almost all couples of arguments in \(\mathbb{F}_q^\times\), as well as lower bounds on differences. Using similar ideas, we then study the biases in the distribution of generalized angles of Gaussian primes over function fields and primes in short intervals over function fields, following recent works of Rudnick and Waxman, and Keating and Rudnick, building on cohomological interpretations and determinations of monodromy groups by Katz. Our results are based on generic linear independence of Frobenius eigenvalues of \(\ell\)-adic representations, that we obtain from integral monodromy information via the strategy of Kowalski, which combines his large sieve for Frobenius with a method of Girstmair. An extension of the large sieve is given to handle wild ramification of sheaves on varieties. Cited in 6 Documents MSC: 11T23 Exponential sums 11J72 Irrationality; linear independence over a field 11N36 Applications of sieve methods 11R58 Arithmetic theory of algebraic function fields Keywords:exponential sums; linear independence; \(L\)-functions; large sieve; characters; function fields; Kloosterman sums PDFBibTeX XMLCite \textit{C. Perret-Gentil}, Algebra Number Theory 14, No. 5, 1291--1329 (2020; Zbl 1459.11228) Full Text: DOI arXiv References: [1] 10.4310/MRL.2010.v17.n4.a9 · Zbl 1255.11032 · doi:10.4310/MRL.2010.v17.n4.a9 [2] 10.1515/crll.1993.442.19 · Zbl 0788.11026 · doi:10.1515/crll.1993.442.19 [3] 10.4171/LEM/56-3-1 · Zbl 1220.11078 · doi:10.4171/LEM/56-3-1 [4] 10.2307/2034344 · Zbl 0122.27503 · doi:10.2307/2034344 [5] 10.1112/blms/4.2.133 · Zbl 0252.20004 · doi:10.1112/blms/4.2.133 [6] 10.1112/S0010437X08003631 · Zbl 1233.11099 · doi:10.1112/S0010437X08003631 [7] 10.1016/j.jnt.2009.09.015 · Zbl 1195.11124 · doi:10.1016/j.jnt.2009.09.015 [8] ; Cha, Ann. Sci. Éc. Norm. Supér. (4), 49, 1239 (2016) · Zbl 1367.11085 [9] 10.1093/imrn/rnw087 · Zbl 1405.11086 · doi:10.1093/imrn/rnw087 [10] ; Curtis, Representation theory of finite groups and associative algebras. Pure and Applied Mathematics, XI (1962) · Zbl 0131.25601 [11] 10.1017/S0305004119000100 · Zbl 1477.11161 · doi:10.1017/S0305004119000100 [12] ; Evertse, Compositio Math., 53, 225 (1984) · Zbl 0547.10008 [13] 10.1098/rsta.2014.0309 · Zbl 1397.11128 · doi:10.1098/rsta.2014.0309 [14] 10.1142/9789814307734 · doi:10.1142/9789814307734 [15] ; Gallagher, Analytic number theory. Proc. Sympos. Pure Math., XXIV, 91 (1973) [16] 10.1007/BF01312446 · Zbl 0514.12010 · doi:10.1007/BF01312446 [17] 10.4064/aa-89-1-53-96 · Zbl 0924.12002 · doi:10.4064/aa-89-1-53-96 [18] 10.1006/jabr.1993.1041 · Zbl 0771.20009 · doi:10.1006/jabr.1993.1041 [19] 10.5802/jtnb.537 · Zbl 1119.11040 · doi:10.5802/jtnb.537 [20] 10.1215/S0012-7094-08-14115-8 · Zbl 1205.11062 · doi:10.1215/S0012-7094-08-14115-8 [21] ; Humphreys, Modular representations of finite groups of Lie type. London Mathematical Society Lecture Note Series, 326 (2006) · Zbl 1113.20016 [22] ; Illusie, The Euler-Poincaré characteristic. Astérisque, 82, 161 (1981) · Zbl 0496.14013 [23] 10.1007/s11856-012-0117-x · Zbl 1332.11098 · doi:10.1007/s11856-012-0117-x [24] 10.1215/S0012-7094-87-05404-4 · Zbl 0643.12004 · doi:10.1215/S0012-7094-87-05404-4 [25] 10.1515/9781400882120 · Zbl 0675.14004 · doi:10.1515/9781400882120 [26] 10.1515/9781400882434 · Zbl 0731.14008 · doi:10.1515/9781400882434 [27] 10.1006/ffta.2000.0303 · Zbl 1068.14501 · doi:10.1006/ffta.2000.0303 [28] ; Katz, Twisted L-functions and monodromy. Annals of Mathematics Studies, 150 (2002) · Zbl 1029.14005 [29] ; Katz, Moments, monodromy, and perversity : a Diophantine perspective. Annals of Mathematics Studies, 159 (2005) · Zbl 1079.14025 [30] ; Katz, Convolution and equidistribution: Sato-Tate theorems for finite-field Mellin transforms. Annals of Mathematics Studies, 180 (2012) · Zbl 1261.11084 [31] 10.1007/978-1-4614-1260-1_15 · Zbl 1276.11147 · doi:10.1007/978-1-4614-1260-1_15 [32] 10.1093/imrn/rns143 · Zbl 1358.11127 · doi:10.1093/imrn/rns143 [33] 10.1093/imrn/rns144 · Zbl 1328.13028 · doi:10.1093/imrn/rns144 [34] 10.1093/imrn/rnw130 · Zbl 1405.13040 · doi:10.1093/imrn/rnw130 [35] ; Katz, Random matrices, Frobenius eigenvalues, and monodromy. American Mathematical Society Colloquium Publications, 45 (1999) · Zbl 0958.11004 [36] 10.1093/imrn/rns220 · Zbl 1319.11084 · doi:10.1093/imrn/rns220 [37] 10.1007/s00208-009-0409-6 · Zbl 1185.14019 · doi:10.1007/s00208-009-0409-6 [38] 10.1515/CRELLE.2006.094 · Zbl 1217.14019 · doi:10.1515/CRELLE.2006.094 [39] 10.1017/CBO9780511542947 · doi:10.1017/CBO9780511542947 [40] 10.1093/imrn/rnn091 · Zbl 1233.14018 · doi:10.1093/imrn/rnn091 [41] 10.1215/S0012-7094-95-08021-1 · Zbl 0912.11026 · doi:10.1215/S0012-7094-95-08021-1 [42] 10.1007/BF01231904 · Zbl 0778.11036 · doi:10.1007/BF01231904 [43] 10.1016/j.jnt.2018.03.018 · Zbl 1444.11231 · doi:10.1016/j.jnt.2018.03.018 [44] 10.1515/crll.1987.375-376.362 · Zbl 0602.10027 · doi:10.1515/crll.1987.375-376.362 [45] 10.1017/CBO9780511994777 · doi:10.1017/CBO9780511994777 [46] 10.1112/plms/s3-48.3.514 · Zbl 0551.20029 · doi:10.1112/plms/s3-48.3.514 [47] 10.1007/978-3-662-07001-7 · doi:10.1007/978-3-662-07001-7 [48] 10.1017/S0305004117000020 · Zbl 1405.11102 · doi:10.1017/S0305004117000020 [49] 10.1093/imrn/rny202 · Zbl 1466.11093 · doi:10.1093/imrn/rny202 [50] 10.1112/s0025579318000189 · Zbl 1456.11146 · doi:10.1112/s0025579318000189 [51] 10.1007/s000140050142 · Zbl 0981.20036 · doi:10.1007/s000140050142 [52] 10.1017/S144678870003336X · doi:10.1017/S144678870003336X [53] 10.1007/s004400050084 · Zbl 0868.60012 · doi:10.1007/s004400050084 [54] 10.1007/978-1-4757-6046-0 · doi:10.1007/978-1-4757-6046-0 [55] 10.1080/10586458.1994.10504289 · Zbl 0823.11050 · doi:10.1080/10586458.1994.10504289 [56] 10.1007/s11856-019-1867-5 · Zbl 1467.11107 · doi:10.1007/s11856-019-1867-5 [57] ; Deligne, Cohomologie étale. Lecture Notes in Math., 569 (1977) · Zbl 0345.00010 [58] ; Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals. Princeton Mathematical Series, 43 (1993) · Zbl 0821.42001 [59] 10.2307/2034167 · Zbl 0114.25604 · doi:10.2307/2034167 [60] 10.2307/2006943 · Zbl 0568.14025 · doi:10.2307/2006943 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.