×

zbMATH — the first resource for mathematics

A time-accurate, adaptive discretization for fluid flow problems. (English) Zbl 07244844
Summary: This report presents a low computational and cognitive complexity, stable, time accurate and adaptive method for the Navier-Stokes equations. The improved method requires a minimally intrusive modification to an existing program based on the fully implicit / backward Euler time discretization, does not add to the computational complexity, and is conceptually simple. The backward Euler approximation is simply post-processed with a two-step, linear time filter. The time filter additionally removes the overdamping of Backward Euler while remaining unconditionally energy stable, proven herein. Even for constant stepsizes, the method does not reduce to a standard / named time stepping method but is related to a known 2-parameter family of A-stable, two step, second order methods. Numerical tests confirm the predicted convergence rates and the improved predictions of flow quantities such as drag and lift.
MSC:
65 Numerical analysis
Software:
FEniCS
PDF BibTeX XML Cite
Full Text: Link
References:
[1] M. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M. Rognes, and G. Wells. The FEniCS project version 1.5.Archive of Numerical Software, 3(100), 2015.
[2] D. N. Arnold, F. Brezzi, and M. Fortin. A stable finite element for the Stokes equations. CALCOLO, 21(4):337-344, Dec 1984. · Zbl 0593.76039
[3] R. Asselin. Frequency filter for time integrations.Mon. Weather Rev, (100):487-490, 1972. ADAPTIVE DISCRETIZATION FOR FLUID FLOW PROBLEMS273
[4] G. A. Baker, V. A. Dougalis, and O. A. Karakashian. On a higher order accurate fully discrete Galerkin approximation to the Navier-Stokes equations.Mathematics of Computation, 39(160):339-375, 1982. · Zbl 0503.76038
[5] M. Besier and R. Rannacher. Goal-oriented spacetime adaptivity in the finite element Galerkin method for the computation of nonstationary incompressible flow.International Journal for Numerical Methods in Fluids, 70(9):1139-1166, January 2012. · Zbl 1412.76060
[6] S. Charnyi, T. Heister, M. A. Olshanskii, and L. G. Rebholz. On conservation laws of NavierStokes Galerkin discretizations.Journal of Computational Physics, 337:289 - 308, 2017. · Zbl 1415.65222
[7] A. J. Chorin. The numerical solution of the Navier-Stokes equations for an incompressible fluid.Bull. Amer. Math. Soc., 73(6):928-931, 11 1967. · Zbl 0168.46501
[8] M. Crouzeix and P. A. Raviart. Approximation d’´equations d’´evolution lin´eaires par des m´ethodes multipas.Etude Num´erique des Grands Syst‘emes, 1976.
[9] G. Dahlquist. G-stability is equivalent to A-stability.BIT Numerical Mathematics, 18(4):384- 401, Dec 1978. · Zbl 0413.65057
[10] E. Emmrich. Error of the two-step BDF for the incompressible Navier-Stokes problem.ESAIM: M2AN, 38(5):757-764, 2004. · Zbl 1076.76054
[11] E. Emmrich. Stability and convergence of the two-step BDF for the incompressible NavierStokes problem. 5:199-209, 01 2004. · Zbl 1401.76104
[12] J. A. Fiordilino. On pressure estimates for the Navier-Stokes equations.ArXiv e-prints, Mar. 2018.
[13] K. J. Galvin. New subgrid artificial viscosity Galerkin methods for the Navier-Stokes equations.Computer Methods in Applied Mechanics and Engineering, 200(1):242 - 250, 2011. · Zbl 1225.76194
[14] T. Geveci. On the convergence of a time discretization scheme for the Navier-Stokes equations. Mathematics of Computation, 53(187):43-53, 1989. · Zbl 0683.76026
[15] V. Girault and P.-A. Raviart.Finite Element Approximation of the Navier-Stokes Equations. Springer-Verlag Berlin Heidelberg, 1979. · Zbl 0413.65081
[16] V. Girault and P.-A. Raviart. An optimally accurate discrete regularization for second order timestepping methods for navier-stokes equations.Computer Methods in Applied Mechanics and Engineering, 310:388-405, 2016.
[17] P. M. Gresho and R. L. Sani.Incompressible Flow and the Finite Element Method. John Wiley & Sons, Inc., 1998. · Zbl 0941.76002
[18] D. Griffiths and D. Higham. Numerical methods for ordinary differential equations.Springer, 2010. · Zbl 1209.65070
[19] D. F. Griffiths and D. J. Higham.Numerical Methods for Ordinary Differential Equations. Springer-Verlag London Limited, 2010. · Zbl 1209.65070
[20] A. Guzel and W. Layton. Time filters increase accuracy of the fully implicit method.BIT Numerical Mathematics, 58(2):301-315, Jun 2018. · Zbl 1444.65026
[21] J. Heywood and R. Rannacher. Finite element approximation of the nonstationary NavierStokes problem. Part IV. Error analysis for second-order time discretization.SIAM Journal on Numerical Analysis, 27(2):353384, 1990. · Zbl 0694.76014
[22] N. Jiang. A second-order ensemble method based on a blended backward differentiation formula timestepping scheme for time-dependent Navier-Stokes equations.Numerical Methods for Partial Differential Equations, 33(1):34-61. · Zbl 06678289
[23] N. Jiang, M. Mohebujjaman, L. G. Rebholz, and C. Trenchea. An optimally accurate discrete regularization for second order timestepping methods for Navier-Stokes equations.Computer Methods in Applied Mechanics and Engineering, 310:388 - 405, 2016. · Zbl 1439.76076
[24] V. John. Reference values for drag and lift of a two-dimensional time-dependent flow around a cylinder.International Journal for Numerical Methods in Fluids, 44(7):777-788, 2004. · Zbl 1085.76510
[25] W. Layton, N. Mays, M. Neda, and C. Trenchea. Numerical analysis of modular regularization methods for the BDF2 time discretization of the Navier-Stokes equations.ESAIM: M2AN, 48(3):765-793, 2014. · Zbl 1293.35210
[26] W. Layton and C. Trenchea. Stability of two IMEX methods, CNLF and BDF2-AB2, for uncoupling systems of evolution equations.Applied Numerical Mathematics, 62:112-120, 2012. · Zbl 1237.65101
[27] J.-G. Liu, J. Liu, and R. L. Pego. Stable and accurate pressure approximation for unsteady incompressible viscous flow.Journal of Computational Physics, 229(9):3428 - 3453, 2010. · Zbl 1307.76029
[28] J. Rang and L. Angermann. New Rosenbrock W-Methods of order 3 for partial differential algebraic equations of index 1.BIT Numerical Mathematics, 45(4):761-787, Dec 2005. · Zbl 1093.65097
[29] S. S. Ravindran. An extrapolated second order backward difference time-stepping scheme for the magnetohydrodynamics system.Numerical Functional Analysis and Optimization, 37(8):990-1020, 2016. · Zbl 1348.76189
[30] A. J. Robert.An evaluation of the behaviour of planetary waves in an atmospheric model based on spherical harmonics. PhD thesis, McGill, 1965.
[31] M. Sch¨afer and S. Turek. Benchmark computations of laminar flow around a cylinder. In H. E.H., editor,Flow Simulation with High-Performance Computers II. Notes on Numerical Fluid Mechanics, volume 48, pages 547-566. Vieweg+Teubner Verlag, 1996.
[32] R. Temam.Navier-Stokes Equations and Nonlinear Functional Analysis. Society for Industrial and Applied Mathematics, 1995. · Zbl 0833.35110
[33] R. Verf¨urth. Error estimates for a mixed finite element approximation of the Stokes equations. ESAIM: Mathematical Modelling and Numerical Analysis - Mod´elisation Math´ematique et Analyse Num´erique, 18(2):175-182, 1984.
[34] P.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.