×

zbMATH — the first resource for mathematics

The Kähler-Ricci flow and optimal degenerations. (English) Zbl 1447.53081
Summary: We prove that on Fano manifolds, the Kähler-Ricci flow produces a “most destabilising” degeneration, with respect to a new stability notion related to the \(H\)-functional. This answers questions of X. Chen et al. [Geom. Topol. 22, No. 6, 3145–3173 (2018; Zbl 1404.53058)] and W. He [Asian J. Math. 20, No. 4, 645–664 (2016; Zbl 1370.53047)].
We give two applications of this result. Firstly, we give a purely algebro-geometric formula for the supremum of Perelman’s \(\mu\)-functional on Fano manifolds, resolving a conjecture of G. Tian et al. [Trans. Am. Math. Soc. 365, No. 12, 6669–6695 (2013; Zbl 1298.53037)] as a special case. Secondly, we use this to prove that if a Fano manifold admits a Kähler-Ricci soliton, then the Kähler-Ricci flow converges to it modulo the action of automorphisms, with any initial metric. This extends work of Tian-Zhu and Tian et al. [loc. cit.], where either the manifold was assumed to admit a Kähler-Einstein metric, or the initial metric of the flow was assumed to be invariant under a maximal compact group of automorphism.

MSC:
53E30 Flows related to complex manifolds (e.g., Kähler-Ricci flows, Chern-Ricci flows)
14J45 Fano varieties
32Q15 Kähler manifolds
PDF BibTeX XML Cite
Full Text: DOI Euclid
References:
[1] R. H. Bamler. Convergence of Ricci flows with bounded scalar curvature.ArXiv e-prints, March 2016. · Zbl 1410.53063
[2] Shigetoshi Bando. TheK-energy map, almost Einstein K¨ahler metrics and an inequality of the Miyaoka-Yau type.Tohoku Math. J. (2), 39(2):231-235, 1987, MR0887939, Zbl 0678.53061. · Zbl 0678.53061
[3] R. J. Berman and D. Witt Nystrom. Complex optimal transport and the pluripotential theory of K¨ahler-Ricci solitons.ArXiv e-prints, January 2014.
[4] Robert J. Berman. K-polystability ofQ-Fano varieties admitting K¨ahlerEinstein metrics.Invent. Math., 203(3):973-1025, 2016, MR3461370, Zbl 1353.14051.
[5] B. Berndtsson. Probability measures related to geodesics in the space of K¨ahler metrics.ArXiv e-prints, July 2009.
[6] B. Berndtsson. A Brunn-Minkowski type inequality for Fano manifolds and some uniqueness theorems in K¨ahler geometry.Invent. Math., 200(1):149-200, 2015, MR3323577, Zbl 1318.53077.
[7] S. Boucksom, T. Hisamoto, and M. Jonsson. Uniform K-stability, DuistermaatHeckman measures and singularities of pairs.Ann. Inst. Fourier, 67(2), 743-841, 2017, MR3669511, Zbl 06821960. · Zbl 1391.14090
[8] L. Bruasse and A. Teleman. Harder-Narasimhan filtrations and optimal destabilizing vectors in complex geometry.Ann. Inst. Fourier (Grenoble), 55(3):1017- 1053, 2005, MR2149409, Zbl 1093.32009. · Zbl 1093.32009
[9] X. Chen, S. Sun, and B. Wang. K¨ahler-Ricci flow, K¨ahler-Einstein metric, and K-stability.ArXiv e-prints, August 2015.
[10] X. Chen and B. Wang. Space of Ricci flows (II).ArXiv e-prints, May 2014.
[11] Xiuxiong Chen, Simon Donaldson, and Song Sun. K¨ahler-Einstein metrics on Fano manifolds. I, II, III.J. Amer. Math. Soc., 28(1):183-197, 199-234, 235-278, 2015, MR3264766, MR3264767, MR3264768, Zbl 1312.53096, Zbl 1312.53097, Zbl 1311.53059. · Zbl 1312.53096
[12] T. C. Collins and G. Sz´ekelyhidi. K-semistability for irregular Sasakian manifolds.J. Differential Geom.109(1), 81-109, 2018, MR3798716, Zbl 06868031. · Zbl 1403.53039
[13] T. C. Collins and G. Sz´ekelyhidi. The twisted K¨ahler-Ricci flow.Journal f¨ur die Reine und Angewandte Mathematik. [Crelle’s Journal], 716:179-205, 2016, MR3518375, Zbl 1357.53076.
[14] Jean-Pierre Demailly. Mesures de Monge-Amp‘ere et caract´erisation g´eom´etrique des vari´et´es alg´ebriques affines.M´em. Soc. Math. France (N.S.), (19):124, 1985, MR0813252, Zbl 0579.32012.
[15] R. Dervan. Relative K-stability for K¨ahler manifolds.Math Annalen, to appear. · Zbl 1407.53079
[16] W. Ding and G. Tian. K¨ahler-Einstein metrics and the generalized Futaki invariant.Invent. Math., 110:315-335, 1992, MR1185586, Zbl 0779.53044.
[17] W. Ding and G. Tian. The generalized Moser-Trudinger inequality.Nonlinear Analysis and Microlocal Analysis: Proceedings of the International Conference at Nankai Institute of Mathematics. World Scientific, 57-70, 1992. · Zbl 1049.53507
[18] S. Donaldson. The Ding functional, Berndtsson convexity and moment maps. ArXiv e-prints, March 2015. · Zbl 1432.53093
[19] S. K. Donaldson. Scalar curvature and stability of toric varieties.J. Differential Geom., 62(2):289-349, 2002, MR1988506, Zbl 1074.53059.
[20] S. K. Donaldson. Lower bounds on the Calabi functional.J. Differential Geom., 70(3):453-472, 2005, MR2192937, Zbl 1149.53042. · Zbl 1149.53042
[21] W. He. K¨ahler-Ricci soliton and H-functional.Asian J. of Math, 20(4), 2016, 645-663, MR3570456, Zbl 1370.53047.
[22] Weiyong He. On the convergence of the Calabi flow.Proc. Amer. Math. Soc., 143(3):1273-1281, 2015, MR3293741, Zbl 1314.53129. · Zbl 1314.53129
[23] Tomoyuki Hisamoto. On the limit of spectral measures associated to a test configuration of a polarized K¨ahler manifold.J. Reine Angew. Math., 713:129- 148, 2016, MR3483627, Zbl 1343.32017. · Zbl 1343.32017
[24] George R. Kempf. Instability in invariant theory.Ann. of Math. (2), 108(2):299- 316, 1978, MR0506989, Zbl 0406.14031. · Zbl 0406.14031
[25] B. Kleiner and J. Lott. Notes on Perelman’s papers.Geom. Topol.12(5):2587- 2855, 2008, MR2460872, Zbl 1204.53033. · Zbl 1204.53033
[26] N. Pali. Characterization of Einstein-Fano manifolds via the K¨ahler-Ricci flow. Indiana Univ. Math. J., 57(7):3241-3274, 2008, MR2492232, Zbl 1165.53050. · Zbl 1165.53050
[27] G. Perelman. The entropy formula for the Ricci flow and its geometric applications.ArXiv Mathematics e-prints, November 2002.
[28] D. H. Phong and J. Song and J. Sturm and X. Wang. The Ricci flow on the sphere with marked points.arXiv:1407.1118 · Zbl 1431.53104
[29] D. H. Phong and J. Song and J. Sturm and X. Wang. Convergence of the conical Ricci flow onS2to a soliton.arXiv:1503.04488
[30] D. H. Phong and J. Song and J. Sturm and B. Weinkove. The K¨ahler-Ricci flow and the ¯∂operator on vector fields.J. Differential Geometry, 81:631-647, 2009, MR2487603, Zbl 1162.32014. · Zbl 1162.32014
[31] D. H. Phong and J. Sturm. Regularity of geodesic rays and Monge-Amp‘ere equations.Proc. Amer. Math. Soc., 138(10):3637-3650, 2010, MR2661562, Zbl 1205.31004. · Zbl 1205.31004
[32] J. Ross and R. P. Thomas. A study of the Hilbert-Mumford criterion for the stability of projective varieties.J. Algebraic Geom., 16(2):201-255, 2007, MR2274514, Zbl 1200.14095. · Zbl 1200.14095
[33] O. S. Rothaus. Logarithmic Sobolev inequalities and the spectrum of Schr¨odinger operators.J. Funct. Anal., 42:110-120, 1981, MR0620582, Zbl 0471.58025.
[34] N. Sesum and G. Tian. Bounding scalar curvature and diameter along the K¨ahler-Ricci flow (after Perelman).J. Inst. Math. Jussieu, 7(3):575-587, 2008, MR2427424, Zbl 1147.53056. · Zbl 1147.53056
[35] Gang Tian. K¨ahler-Einstein metrics with positive scalar curvature.Invent. Math., 130(1):1-37, 1997, MR1471884, Zbl 0892.53027.
[36] Gang Tian, Shijin Zhang, Zhenlei Zhang, and Xiaohua Zhu. Perelman’s entropy and K¨ahler-Ricci flow on a Fano manifold.Trans. Amer. Math. Soc., 365(12):6669-6695, 2013, MR3105766, Zbl 1298.53037. · Zbl 1298.53037
[37] Gang Tian and Xiaohua Zhu. Convergence of K¨ahler-Ricci flow.J. Amer. Math. Soc., 20(3):675-699, 2007, MR2291916, Zbl 1185.53078. · Zbl 1185.53078
[38] Gang Tian and Xiaohua Zhu. Convergence of the K¨ahler-Ricci flow on Fano manifolds.J. Reine Angew. Math., 678:223-245, 2013, MR3056108, Zbl 1276.14061.
[39] David Witt Nystr¨om. Test configurations and Okounkov bodies.Compos. Math., 148(6):1736-1756, 2012, MR2999302, Zbl 1276.14017.
[40] S.-T. Yau. Open problems in geometry.Proc. Symposia Pure Math., 54:1-28, 1993, MR1216573, Zbl 0801.53001.
[41] R. Ye. The logarithmic Sobolev inequality along the Ricci flow.Commun. Math. Stat., 3(1), 1-36, 2015, MR3333694, Zbl 1319.53078.
[42] Q. S. Zhang. A uniform Sobolev inequality under Ricci flow.IMRN, 1-12, 2007, MR2354801, Zbl 1141.53064.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.