×

zbMATH — the first resource for mathematics

Local likelihood estimation of complex tail dependence structures, applied to U.S. precipitation extremes. (English) Zbl 1441.62118
Summary: To disentangle the complex nonstationary dependence structure of precipitation extremes over the entire contiguous United States (U.S.), we propose a flexible local approach based on factor copula models. Our subasymptotic spatial modeling framework yields nontrivial tail dependence structures, with a weakening dependence strength as events become more extreme; a feature commonly observed with precipitation data but not accounted for in classical asymptotic extreme-value models. To estimate the local extremal behavior, we fit the proposed model in small regional neighborhoods to high threshold exceedances, under the assumption of local stationarity, which allows us to gain in flexibility. By adopting a local censored likelihood approach, we make inference on a fine spatial grid, and we perform local estimation by taking advantage of distributed computing resources and the embarrassingly parallel nature of this estimation procedure. The local model is efficiently fitted at all grid points, and uncertainty is measured using a block bootstrap procedure. We carry out an extensive simulation study to show that our approach can adequately capture complex, nonstationary dependencies, in addition, our study of U.S. winter precipitation data reveals interesting differences in local tail structures over space, which has important implications on regional risk assessment of extreme precipitation events.

MSC:
62H05 Characterization and structure theory for multivariate probability distributions; copulas
62F10 Point estimation
62P12 Applications of statistics to environmental and related topics
Software:
convoSPAT; homtest
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Anderes, E. B.; Stein, M. L., “Local Likelihood Estimation for Nonstationary Random Fields,”, Journal of Multivariate Analysis, 102, 506-520 (2011) · Zbl 1207.62177
[2] Asadi, P.; Davison, A. C.; Engelke, S., “Extremes on River Networks,”, Annals of Applied Statistics, 9, 2023-2050 (2015) · Zbl 1397.62482
[3] Blanchet, J.; Davison, A. C., “Spatial Modelling of Extreme Snow Depth,”, Annals of Applied Statistics, 5, 1699-1725 (2011) · Zbl 1228.62154
[4] Bopp, G. P.; Shaby, B. A.; Huser, R., “A Hierarchical Max-Infinitely Divisible Process for Extreme Areal Precipitation Over Watersheds, arXiv preprint, 1805, 06084 (2019)
[5] Castro-Camilo, D.; de Carvalho, M., “Spectral Density Regression for Bivariate Extremes,”, Stochastic Environmental Research and Risk Assessment, 31, 1603-1613 (2017)
[6] Castro-Camilo, D.; de Carvalho, M.; Wadsworth, J., “Time-Varying Extreme Value Dependence With Application to Leading European Stock Markets,”, The Annals of Applied Statistics, 12, 283-309 (2018) · Zbl 1393.62024
[7] Castruccio, S.; Huser, R.; Genton, M. G., “High-Order Composite Likelihood Inference for Max-Stable Distributions and Processes,”, Journal of Computational and Graphical Statistics, 25, 1212-1229 (2016)
[8] Cooley, D. S.; Naveau, P.; Nychka, D., “Bayesian Spatial Modeling of Extreme Precipitation Return Levels,”, Journal of American Statistical Association, 102, 824-840 (2007) · Zbl 05564414
[9] Davison, A. C.; Gholamrezaee, M. M., “Geostatistics of Extremes,”, Proceedings of the Royal Society A: Mathematical, Physical & Engineering Sciences, 468, 581-608 (2012) · Zbl 1364.86020
[10] Davison, A. C.; Huser, R.; Thibaud, E., Handbook of Environmental and Ecological Statistics, Spatial Extremes” (Chapter 31), 711-744 (2019), Boca Raton, FL: CRC Press, Boca Raton, FL
[11] Davison, A. C.; Padoan, S.; Ribatet, M., “Statistical Modelling of Spatial Extremes” (with discussion),, Statistical Science, 27, 161-186 (2012) · Zbl 1330.86021
[12] Davison, A. C.; Ramesh, N., “Local Likelihood Smoothing of Sample Extremes,”, Journal of the Royal Statistical Society, Series B, 62, 191-208 (2000) · Zbl 0942.62058
[13] de Fondeville, R.; Davison, A. C., “High-Dimensional Peaks-Over-Threshold Inference,”, Biometrika, 105, 575-592 (2018) · Zbl 06991020
[14] Engelke, S.; Malinowski, A.; Kabluchko, Z.; Schlather, M., “Estimation of Hüsler-Reiss Distributions and Brown-Resnick Processes,”, Journal of the Royal Statistical Society, Series B, 77, 239-265 (2015) · Zbl 1414.60038
[15] Ferreira, A.; De Haan, L., “The Generalized Pareto Process; With a View Towards Application and Simulation,”, Bernoulli, 20, 1717-1737 (2014) · Zbl 1312.60068
[16] Fill, H. D.; Stedinger, J. R., “Homogeneity Tests Based Upon Gumbel Distribution and a Critical Appraisal of Dalrymple’s Test,”, Journal of Hydrology, 166, 81-105 (1995)
[17] Fischer, E. M.; Knutti, R., “Observed Heavy Precipitation Increase Confirms Theory and Early Models,”, Nature Climate Change, 6, 986-991 (2016)
[18] Fuentes, M., “A High Frequency Kriging Approach for Non-Stationary Environmental Processes,”, Environmetrics, 12, 469-483 (2001)
[19] Genest, C.; Ghoudi, K.; Rivest, L.-P., “A Semiparametric Estimation Procedure of Dependence Parameters in Multivariate Families of Distributions,”, Biometrika, 82, 543-552 (1995) · Zbl 0831.62030
[20] Genton, M. G.; Johnson, C.; Potter, K.; Stenchikov, G.; Sun, Y., “Surface Boxplots,”, Stat, 3, 1-11 (2014)
[21] Gneiting, T.; Genton, M. G.; Guttorp, P., “Geostatistical Space-Time Models, Stationarity, Separability, and Full Symmetry,”, Monographs on Statistics and Applied Probability, 107, 151 (2006) · Zbl 1282.86019
[22] Higdon, D., “A Process-Convolution Approach to Modelling Temperatures in the North Atlantic Ocean,”, Environmental and Ecological Statistics, 5, 173-190 (1998)
[23] Hoerling, M.; Eischeid, J.; Perlwitz, J.; Quan, X.-W.; Wolter, K.; Cheng, L., “Characterizing Recent Trends in U.S. Heavy Precipitation,”, Journal of Climate, 29, 2313-2332 (2016)
[24] Hosking, J.; Wallis, J., “Some Statistics Useful in Regional Frequency Analysis,”, Water Resources Research, 29, 271-281 (1993)
[25] Hosking, J.; Wallis, J., Regional Frequency Analysis: An Approach Based on L-Moments (2005), Cambridge, UK: Cambridge University Press, Cambridge, UK
[26] Huser, R.; Davison, A. C., “Composite Likelihood Estimation for the Brown-Resnick Process,”, Biometrika, 100, 511-518 (2013) · Zbl 1452.62702
[27] Huser, R.; Davison, A. C., “Space-Time Modelling of Extreme Events,”, Journal of the Royal Statistical Society, 76, 439-461 (2014)
[28] Huser, R.; Davison, A. C.; Genton, M. G., “Likelihood Estimators for Multivariate Extremes,”, Extremes, 19, 79-103 (2016) · Zbl 1381.62067
[29] Huser, R.; Dombry, C.; Ribatet, M.; Genton, M. G., “Full Likelihood Inference for Max-Stable Data,”, Stat, 8, e218 (2019)
[30] Huser, R.; Genton, M. G., “Non-stationary Dependence Structures for Spatial Extremes,”, Journal of Agricultural, Biological, and Environmental Statistics, 21, 470-491 (2016) · Zbl 1347.62246
[31] Huser, R.; Opitz, T.; Thibaud, E., “Bridging Asymptotic Independence and Dependence in Spatial Extremes Using Gaussian Scale Mixtures,”, Spatial Statistics, 21, 166-186 (2017)
[32] Huser, R.; Opitz, T.; Thibaud, E., Max-Infinitely Divisible Models and Inference for Spatial Extremes, arXiv preprint, 1801, 02946 (2018)
[33] Huser, R.; Wadsworth, J. L., “Modeling Spatial Processes With Unknown Extremal Dependence Class,”, Journal of the American Statistical Association, 114, 434-444 (2019) · Zbl 07095888
[34] Hüsler, J.; Reiss, R.-D., “Maxima of Normal Random Vectors: Between Independence and Complete Dependence,”, Statistics & Probability Letters, 7, 283-286 (1989) · Zbl 0679.62038
[35] Joe, H., Dependence Modeling With Copulas (2014), Boca Raton, FL: CRC Press, Boca Raton, FL · Zbl 1346.62001
[36] Katz, R. W.; Parlange, M. B.; Naveau, P., “Statistics of Extremes in Hydrology,”, Advances in Water Resources, 25, 1287-1304 (2002)
[37] Krupskii, P.; Huser, R.; Genton, M. G., “Factor Copula Models for Replicated Spatial Data,”, Journal of the American Statistical Association, 113, 467-479 (2018) · Zbl 1398.62256
[38] Krupskii, P.; Joe, H., “Structured Factor Copula Models: Theory, Inference and Computation,”, Journal of Multivariate Analysis, 138, 53-73 (2015) · Zbl 1320.62139
[39] Ledford, A. W.; Tawn, J. A., “Statistics for Near Independence in Multivariate Extreme Values,”, Biometrika, 83, 169-187 (1996) · Zbl 0865.62040
[40] Lu, L.-H.; Stedinger, J. R., “Sampling Variance of Normalized GEV/PWM Quantile Estimators and a Regional Homogeneity Test,”, Journal of Hydrology, 138, 223-245 (1992)
[41] Morris, S. A.; Reich, B. J.; Thibaud, E.; Cooley, D., “A Space-Time Skew-t Model for Threshold Exceedances,”, Biometrics, 73, 749-758 (2017)
[42] Nychka, D.; Wikle, C. K.; Royle, J. A., “Multiresolution Models for Nonstationary Spatial Covariance Functions,”, Statistical Modelling, 2, 315-331 (2002) · Zbl 1195.62146
[43] Opitz, T., “Modeling Asymptotically Independent Spatial Extremes Based on Laplace Random Fields,”, Spatial Statistics, 16, 1-18 (2016)
[44] Opitz, T.; Huser, R.; Bakka, H.; Rue, H., “INLA Goes Extreme: Bayesian Tail Regression for the Estimation of High Spatio-Temporal Quantiles,”, Extremes, 21, 441-462 (2018) · Zbl 1407.62167
[45] Paciorek, C. J.; Schervish, M. J., “Spatial Modelling Using a New Class of Nonstationary Covariance Functions,”, Environmetrics, 17, 483-506 (2006)
[46] Padoan, S. A.; Ribatet, M.; Sisson, S. A., “Likelihood-Based Inference for Max-Stable Processes,”, Journal of the American Statistical Association, 105, 263-277 (2010) · Zbl 1397.62172
[47] Risser, M. D.; Calder, C. A., “Local Likelihood Estimation for Covariance Functions With Spatially-Varying Parameters: The convoSPAT Package for R,”, Journal of Statistical Software, 81, 1-32 (2017)
[48] Røislien, J.; Omre, H., “T-Distributed Random Fields: A Parametric Model for Heavy-Tailed Well-Log Data,”, Mathematical Geology, 38, 821-849 (2006)
[49] Rootzén, H.; Segers, J.; Wadsworth, J. L., “Multivariate Generalized Pareto Distributions: Parametrizations, Representations, and Properties,”, Journal of Multivariate Analysis, 165, 117-131 (2018) · Zbl 1397.62173
[50] Scholz, F. W.; Stephens, M. A., “K-Sample Anderson-Darling Tests,”, Journal of the American Statistical Association, 82, 918-924 (1987)
[51] Sklar, M., “Fonctions de Repartition an Dimensions et Leurs Marges,”, Publ. inst. statist. univ. Paris, 8, 229-231 (1959) · Zbl 0100.14202
[52] Stein, M. L., Interpolation of Spatial Data: Some Theory for Kriging (1999), New York: Springer, New York · Zbl 0924.62100
[53] Stein, M. L. (2005), “Nonstationary Spatial Covariance Functions,” unpublished.
[54] Sun, Y.; Genton, M. G., “Functional Boxplots,”, Journal of Computational and Graphical Statistics, 20, 316-334 (2011)
[55] Thibaud, E.; Mutzner, R.; Davison, A. C., “Threshold Modeling of Extreme Spatial Rainfall,”, Water Resources Research, 49, 4633-4644 (2013)
[56] Thibaud, E.; Opitz, T., “Efficient Inference and Simulation for Elliptical Pareto Processes,”, Biometrika, 102, 855-870 (2015) · Zbl 1372.62011
[57] Vettori, S.; Huser, R.; Genton, M. G., “Bayesian Modeling of Air Pollution Extremes Using Nested Multivariate Max-Stable Processes,”, Biometrics (2019) · Zbl 1436.62678
[58] Viglione, A.; Laio, F.; Claps, P., “A Comparison of Homogeneity Tests for Regional Frequency Analysis,”, Water Resources Research, 43, W03428 (2007)
[59] Wadsworth, J. L.; Tawn, J. A., “Dependence Modelling for Spatial Extremes,”, Biometrika, 99, 253-272 (2012) · Zbl 1318.62160
[60] Wadsworth, J. L.; Tawn, J. A., Efficient Inference for Spatial Extreme Value Processes Associated to Log-Gaussian Random Functions,”, Biometrika, 101, 1-15 (2014) · Zbl 1400.62104
[61] Westra, S.; Alexander, L. V.; Zwiers, F. W., “Global Increasing Trends in Annual Maximum Daily Precipitation,”, Journal of Climate, 26, 3904-3918 (2013)
[62] Westra, S.; Sisson, S. A., “Detection of Non-stationarity in Precipitation Extremes Using a Max-Stable Process Model,”, Journal of Hydrology, 406, 119-128 (2011)
[63] Wilby, R. L.; Wigley, T.; Conway, D.; Jones, P.; Hewitson, B.; Main, J.; Wilks, D., “Statistical Downscaling of General Circulation Model Output: A Comparison of Methods,”, Water Resources Research, 34, 2995-3008 (1998)
[64] Zhang, H., “Inconsistent Estimation and Asymptotically Equal Interpolations in Model-Based Geostatistics,”, Journal of the American Statistical Association, 99, 250-261 (2004) · Zbl 1089.62538
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.