zbMATH — the first resource for mathematics

Geological facies recovery based on weighted \(\ell_1\)-regularization. (English) Zbl 1441.86009
Summary: A weighted compressed sensing (WCS) algorithm is proposed for the problem of channelized facies reconstruction from pixel-based measurements. This strategy integrates information from: (i) image structure in a transform domain (the discrete cosine transform); and (ii) a statistical model obtained from the use of multiple-point simulations (MPS) and a training image. A method is developed to integrate multiple-point statistics within the context of WCS, using for that a collection of weight definitions. In the experimental validation, excellent results are reported showing that the WCS provides good reconstruction for geological facies models even in the range of [0.3–1%] pixel-based measurements. Experiments show that the proposed solution outperforms methods based on pure CS and MPS, when the performance is measured in terms of signal-to-noise ratio, and similarity perceptual indicators.
86A22 Inverse problems in geophysics
86A32 Geostatistics
Full Text: DOI
[1] Amizic B, Derin Babacan S, Molina R, Katsaggelos AK (2010) Sparse Bayesian blind image deconvolution with parameter estimation. In: European signal processing conference, pp 626-630. 10.1186/1687-5281-2012-20 · Zbl 1371.94039
[2] Arpat, B.; Caers, J., Conditional simulations with patterns, Math Geol, 39, 2, 177-203 (2007)
[3] Babacan, SD; Molina, R.; Katsaggelos, AK, Variational Bayesian blind deconvolution using a total variation prior, IEEE Trans Image Process, 18, 1, 12-26 (2009) · Zbl 1371.94479
[4] Blumensath, T.; Davies, M., Iterative hard thresholding for compressive sensing, Appl Comput Harmon Anal, 27, 7, 265-274 (2009) · Zbl 1174.94008
[5] Bogdan M, van den Berg E, Su W, Candes E (2013) Statistical estimation and testing via the sorted L1 norm. ArXiv e-prints arXiv:1310.1969
[6] Bondell, HD; Reich, BJ, Simultaneous regression shrinkage, variable selection, and supervised clustering of predictors with OSCAR, Biometrics, 64, 115-123 (2008) · Zbl 1146.62051
[7] Calderon, H.; Silva, JF; Ortiz, JM; Egana, A., Reconstruction of channelized geological facies based on RIPless compressed sensing, Comput Geosci, 77, 54-65 (2015)
[8] Candès, E.; Plan, Y., A probabilistic and RIPless theory of compressed sensing, IEEE Trans Inf Theory, 57, 11, 7235-7254 (2011) · Zbl 1365.94174
[9] Candès, E.; Tao, T., Decoding by linear programming, IEEE Trans Inf Theory, 51, 12, 4203-4215 (2005) · Zbl 1264.94121
[10] Candès, E.; Tao, T., Near-optimal signal recovery from random projections: universal encoding strategies?, IEEE Trans Inf Theory, 52, 12, 5406-5425 (2006) · Zbl 1309.94033
[11] Candès, E.; Romberg, J.; Tao, T., Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information, IEEE Trans Inf Theory, 52, 2, 489-509 (2006) · Zbl 1231.94017
[12] Candès, E.; Romberg, J.; Tao, T., Stable signal recovery from incomplete and inaccurate measurements, Commun Pure Appl Math, 59, 1207-1223 (2006) · Zbl 1098.94009
[13] Candès, E.; Wakin, M.; Boyd, S., Enhancing sparsity by reweighted \(\ell_1\) minimization, J Fourier Anal Appl, 14, 5-6, 877-905 (2008) · Zbl 1176.94014
[14] Chen, Z.; Babacan, SD; Molina, R.; Katsaggelos, AK, Variational Bayesian methods for multimedia problems, IEEE Trans Multimed, 16, 4, 1000-1017 (2014)
[15] Choudhary S, Mitra U (2014) Sparse blind deconvolution: what cannot be done. In: IEEE international symposium on information theory—proceedings, pp 3002-3006. 10.1109/ISIT.2014.6875385
[16] Cohen, A.; Dahmen, W.; DeVore, R., Compressed sensing and best \(k\)-term approximation, J Am Math Soc, 22, 1, 211-231 (2009) · Zbl 1206.94008
[17] Deutsch, CV; Journel, AG, GSLIB: geostatistical software library and user’s guide (1998), New York: Oxford University Press, New York
[18] Donoho, D., Compressed sensing, IEEE Trans Inf Theory, 52, 4, 1289-1306 (2006) · Zbl 1288.94016
[19] Donoho, DL; Vetterli, M.; DeVore, RA; Daubechies, I., Data compression and harmonic analysis, IEEE Trans Inf Theory, 44, 6, 2435-2476 (1998) · Zbl 1125.94311
[20] Elad, M., Sparse and redundant representations (2010), New York: Springer, New York
[21] Elsheikh, A.; Wheeler, M.; Hoteit, I., Sparse calibration of subsurface flow models using nonlinear orthogonal matching pursuit and an iterative stochastic ensemble method, Adv Water Resour, 56, 14-26 (2013)
[22] Fergus R, Singh B, Hertzmann A, Roweis ST, Freeman WT (2006) Removing camera shake from a single photograph. In: ACM SIGGRAPH 2006 Papers—SIGGRAPH ’06, p 787. 10.1145/1179352.1141956 · Zbl 1371.94125
[23] Figueiredo MAT, Nowak RD (2014) Sparse estimation with strongly correlated variables using ordered weighted L1 regularization. ArXiv e-prints arXiv:1409.4005
[24] Guardiano F, Srivastava M (1993) Multivariate geostatistics: beyond bivariate methods. In: Geostatistics-Troia. Kluwer Academic, Amsterdam, pp 133-144
[25] Huang J, Huang X, Metaxas D (2008) Simultaneous image transformation and sparse representation recovery. In: 2008 IEEE conference on computer vision and pattern recognition, pp 1-8. 10.1109/CVPR.2008.4587640
[26] Jafarpour, B., Wavelet reconstruction of geologic facies from nonlinear dynamic flow measurements, IEEE Trans Geosci Remote Sens, 49, 5, 1520-1535 (2011)
[27] Jafarpour, B.; McLaughlin, DB, Reservoir characterization with the discrete cosine transform, SPE J, 14, 1, 182-201 (2009)
[28] Jafarpour, B.; Goyal, VK; McLaughlin, DB; Freeman, WT, Transform-domain sparsity regularization for inverse problems in geosciences, Geophysics, 74, 5, R69-R83 (2009)
[29] Jafarpour, B.; Goyal, VK; McLaughlin, DB; Freeman, WT, Compressed history matching: exploiting transform-domain sparsity for regularization of nonlinear dynamic data integration problems, Math Geosci, 42, 1, 1-27 (2010) · Zbl 1185.94011
[30] Ji G, Hughes MC, Sudderth EB (2017) From patches to images: a nonparametric generative model. In: Precup D, Teh YW (eds) Proceedings of the 34th international conference on machine learning, PMLR, International Convention Centre, Sydney, Australia, Proceedings of Machine Learning Research, vol 70, pp 1675-1683. http://proceedings.mlr.press/v70/ji17a.html
[31] Jung H, Jo H, Kim S, Lee K, Choe J (2017) Recursive update of channel information for reliable history matching of channel reservoirs using enkf with DCT. J Pet Sci Eng 154:19-37. 10.1016/j.petrol.2017.04.016. http://www.sciencedirect.com/science/article/pii/S092041051730428X
[32] Jung H, Jo H, Kim S, Lee K, Choe J (2018) Geological model sampling using PCA-assisted support vector machine for reliable channel reservoir characterization. J Pet Sci Eng 167:396-405. 10.1016/j.petrol.2018.04.017. http://www.sciencedirect.com/science/article/pii/S0920410518303231
[33] Khajehnejad, M.; Xu, W.; Avestimehr, A.; Hassibi, B., Analyzing weighted \(\ell_1\) minimization for sparse recovery with nonuniform sparse models, IEEE Trans Signal Process, 59, 5, 1985-2001 (2011) · Zbl 1392.94273
[34] Khaninezhad MR, Jafarpour B (2017) A discrete imaging formulation for history matching complex geologic facies. In: Society of petroleum engineers p 22. 10.2118/182727-MS
[35] Khaninezhad, MM; Jafarpour, B., Hybrid parametrization for robust history matching, SPE J, 19, 3, 487-499 (2014)
[36] Khaninezhad, MM; Jafarpour, B.; Li, L., Sparse geologic dictonaries for subsurface flow model calibration: part 1 inversion formulation, Adv Water Resour, 39, 106-121 (2012)
[37] Lee, J.; Kitanidis, P., Bayesian inversion with total variations prior for discrete geologic structure identification, Water Resour Res, 49, 7658-7669 (2013)
[38] Lee K, Jung S, Choe J (2016) Ensemble smoother with clustered covariance for 3D channelized reservoirs with geological uncertainty. J Pet Sci Eng 145:423-435. 10.1016/j.petrol.2016.05.029. http://www.sciencedirect.com/science/article/pii/S0920410516302005
[39] Lee K, Lim J, Choe J, Lee HS (2017) Regeneration of channelized reservoirs using history-matched facies-probability map without inverse scheme. J Pet Sci Eng 149:340-350. 10.1016/j.petrol.2016.10.046. http://www.sciencedirect.com/science/article/pii/S0920410516308178
[40] Leuangthong, O.; McLennan, J.; Deutsch, C., Minimum acceptance criteria for geostatistical realizations, Nat Resour Res, 13, 3, 131-141 (2004)
[41] Li L, Jafarpour B (2009) An iteratively reweighted algorithm for sparse reconstruction of subsurface flow properties from nonlinear dynamic data. CoRR abs/0911.2270, arXiv:0911.2270
[42] Likas, AC; Galatsanos, NP, A variational approach for Bayesian blind image deconvolution, IEEE Trans Signal Process, 52, 8, 2222-2233 (2004) · Zbl 1369.94031
[43] Mallat, S., A wavelet tour of signal processing (2009), New York: Academic Press, New York · Zbl 1170.94003
[44] Mallat, S.; Zhang, Z., Matching pursuit with time-frequency dictionaries, IEEE Trans Signal Process, 41, 12, 3397-3415 (1993) · Zbl 0842.94004
[45] Mariethoz, G.; Caers, J., Multiple-point geostatistics (2015), Hoboken: Wiley, Hoboken
[46] Mariethoz, G.; Lefebvre, S., Bridges between mutiple-point geostatistics and texture synthesis: review and guidelines for future research, Comput Geosci, 66, 66-80 (2014)
[47] Mariethoz, G.; Renard, P., Reconstruction of incomplete data sets or images using direct sampling, Math Geosci, 42, 245-268 (2010) · Zbl 1184.86015
[48] Minniakhmetov, I.; Dimitrakopoulos, R.; Godoy, M., High-order spatial simulation using legendre-like orthogonal splines, Math Geosci, 50, 753-780 (2018) · Zbl 1402.86003
[49] Miskin J, MacKay D (2001) Ensemble learning for blind source separation. In: Principles and practice, independent component analysis, pp 209-233
[50] Molina R, Katsaggelos A, Abad J, Mateos J (1997) A Bayesian approach to blind deconvolution based on Dirichlet \(\backslash\) ndistributions. In: 1997 IEEE international conference on acoustics, speech, and signal processing 4:2809-2812. 10.1109/ICASSP.1997.595373
[51] Ortiz, JM; Deutsch, CV, Indicator simulation accounting for multiple-point statistics, Math Geol, 36, 5, 545-565 (2004) · Zbl 1267.86011
[52] Peredo, O.; Ortiz, JM, Parallel implementation of simulating annealing to reproduce mutliple-point statistics, Comput Geosci, 37, 1110-1121 (2011)
[53] Perrone D, Favaro P (2014) Total variation blind deconvolution: the devil is in the details. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition, pp 2909-2916. 10.1109/CVPR.2014.372
[54] Perrone, D.; Favaro, P., A clearer picture of total variation blind deconvolution, IEEE Trans Pattern Anal Mach Intell, 38, 6, 1041-1055 (2016)
[55] Rudin LI, Osher S, Fatemi E (1992) Nonlinear total variation based noise removal algorithms. Phys D: Nonlinear Phenom 60(1-4):259-268. 10.1016/0167-2789(92)90242-F. arXiv:1011.1669v3 · Zbl 0780.49028
[56] Sana F, Katterbauer K, Al-Naffouri T, Hoteit I (2015) Enhanced recovery of subsurface geological structures using compressed sensing and the ensemble kalman filter. In: 2015 IEEE international geoscience and remote sensing symposium (IGARSS), pp 3107-3110. 10.1109/IGARSS.2015.7326474
[57] Sana, F.; Katterbauer, K.; Al-Naffouri, TY; Hoteit, I., Orthogonal matching pursuit for enhanced recovery of sparse geological structures with the ensemble kalman filter, IEEE J Sel Top Appl Earth Obs Remote Sens, 9, 4, 1710-1724 (2016)
[58] Shahraeeni, M., Enhanced multiple-point statistical simulation with backtracking, forward checking and conflict-directed backjumping, Math Geosci, 51, 2, 155-186 (2019) · Zbl 1411.86012
[59] Srinivas, U.; Suo, Y.; Dao, M.; Monga, V.; Tran, TD, Structured sparse priors for image classification, IEEE Trans Image Process, 24, 6, 1763-1776 (2015) · Zbl 1408.94610
[60] Strebelle, S., Conditional simulation of complex geological structures using multiple points statistics, Math Geol, 34, 1, 1-22 (2002) · Zbl 1036.86013
[61] Strebelle S, Remy N (2004) Post-processing of multiple-point geostatistical models to improve reproduction of training patterns. In: Geostatistics Banff 2004, vol 2, pp 979-988
[62] Suzuki S, Strebelle S (2007) Real-time post-processing method to enhance multiple-point statistics simulation. In: Petroleum geostatistics 2007
[63] Tahmasebi, P.; Sahimi, M.; Caers, J., Ms-CCSIM: accelerating pattern-based geostatistical simulation of categorical variables using multi-scale search in Fourier spaces, Comput Geosci, 67, 75-88 (2014)
[64] Tahmasebi, P.; Sahimi, M.; Andrade, JE, Image-based modeling of granular porous media, Geophys Res Lett, 44, 4738-4746 (2017)
[65] Tan, X.; Tahmasebi, P.; Caers, J., Comparing training-image based algorithms using an analysis of distances, Math Geosci, 46, 149-169 (2014) · Zbl 1322.65038
[66] Tropp, J.; Gilbert, A., Signal recovery from random measurements via orthogonal matching pursuit, IEEE Trans Inf Theory, 53, 12, 4655-4666 (2007) · Zbl 1288.94022
[67] Vega M, Molina R, Katsaggelos AK (2014) Parameter estimation in Bayesian blind deconvolution with super Gaussian image priors. In: European signal processing conference. 10.1016/j.ijhm.2015.04.012
[68] Vetterli, M.; Kovacevic, J., Wavelet and subband coding (1995), Englewood Cliffs: Prentice-Hall, Englewood Cliffs
[69] Wang, Y.; Arns, CH; Rahman, SS; Arns, JY, Porous structure reconstruction using convolutional neural networks, Math Geosci, 50, 781-799 (2018) · Zbl 1402.86005
[70] Wu, J.; Boucher, A.; Zhang, T., A SGeMS code for pattern simulation of continuous and categorical variables: FILTERSIM, Comput Geosci, 34, 12, 1863-1876 (2008)
[71] Xu Y, Yin W (2016) A fast patch dictionary method for whole image recovery. Inverse Probl Imaging 10(2):563. 10.3934/ipi.2016012, http://aimsciences.org//article/id/f83bb625-c5c0-4bd6-a828-b6c548abaadb · Zbl 1395.94071
[72] Zeng X, Figueiredo M (2014) The atomic norm formulation of oscar regularization with application to the Frank-Wolfe algorithm. In: 2014 Proceedings of the 22nd European signal processing conference (EUSIPCO), pp 780-784
[73] Zhang Y, Kuo Hw, Wright J (2018) Structured local minima in sparse blind deconvolution. In: Advances in neural information processing systems, pp 2328-2337
[74] Zhao, Y.; Li, D., Reweighted \(\ell_1\)-minimization for sparse solutions to underdetermined linear systems, SIAM J Optim, 22, 3, 1065-1088 (2012) · Zbl 1261.65042
[75] Zhou, X.; Sun, W., On the sampling theorem for wavelet subspaces, J Fourier Anal Appl, 5, 4, 347-354 (1999) · Zbl 0931.42022
[76] Zhou, W.; Bovik, A.; Sheikh, H.; Simoncelli, E., Image quality assessment: from error visibility to structural similarity, IEEE Trans Image Process, 13, 4, 600-612 (2004)
[77] Zhou X, Molina R, Zhou F, Katsaggelos AK (2014) Fast iteratively reweighted least squares for lpregularized image deconvolution and reconstruction. In: 2014 IEEE international conference on image processing, ICIP 2014, pp 1783-1787. 10.1109/ICIP.2014.7025357
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.