×

On \(p\)-adic L-functions of \(GL(2)\times GL(2)\) over totally real fields. (English) Zbl 0725.11025

Let D(s,f,g) be the Rankin product L-function for two Hilbert cusp forms f and g. This L-function is in fact the standard L-function of an automorphic representation of the algebraic group GL(2)\(\times GL(2)\) defined over a totally real field. Under the ordinarity assumption at a given prime p for f and g, we shall construct a p-adic analytic function of several variables which interpolates the algebraic part of D(m,f,g) for critical integers m, regarding all the ingredients m, f and g as variables.

MSC:

11F67 Special values of automorphic \(L\)-series, periods of automorphic forms, cohomology, modular symbols
11F70 Representation-theoretic methods; automorphic representations over local and global fields
11F85 \(p\)-adic theory, local fields
11F33 Congruences for modular and \(p\)-adic modular forms
11F41 Automorphic forms on \(\mbox{GL}(2)\); Hilbert and Hilbert-Siegel modular groups and their modular and automorphic forms; Hilbert modular surfaces
PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] N. BOURBAKI, Algèbre, Hermann, Paris, 1970.
[2] N. BOURBAKI, Algèbre commutative, Hermann, Paris, 1961.
[3] D. BLASIUS and J. D. ROGAWSKI, Galois representations for Hilbert modular forms, Bull. A.M.S., (1) 21 (1989), 65-69.0684.1201390b:11046 · Zbl 0684.12013
[4] W. CASSELMAN, On some results of Atkin and Lehner, Math. Ann., 201 (1973), 301-314.0239.1001549 #2558 · Zbl 0239.10015
[5] J. COATES, Motivic p-adic L-functions, Proceedings of the Durham Symposium, July, 1989, LMS Lecture Note Series, 153 (1991), 141-172.0725.1102993b:11082 · Zbl 0706.11064
[6] P. COLMEZ, Résidu en s = 1 des fonctions zêta p-adiques, Inventiones Math., 91 (1988), 371-389.0651.1201089d:11104 · Zbl 0651.12010
[7] P. DELIGNE, Valeurs de fonctions L et périodes d’intégrales, Proc. Symp. Pure Math., 33 (1979), part. 2, 313-346.0449.1002281d:12009 · Zbl 0449.10022
[8] H. HIDA, On p-adic Hecke algebras for GL2 over totally real fields, Ann. of Math., 128 (1988), 295-384.0658.1003489m:11046 · Zbl 0658.10034
[9] H. HIDA, On nearly ordinary Hecke algebras for GL(2) over totally real fields, Adv. Studies in Pure Math., 17 (1989), 139-169.0742.1102692f:11064 · Zbl 0742.11026
[10] H. HIDA, A p-adic measure attached to the zeta functions associated with two elliptic modular forms II, Ann. l’Institut Fourier, 38-3 (1988), 1-83.0645.1002889k:11120AIF_1988__38_3_1_0
[11] H. HIDA, A p-adic measure attached to the zeta functions associated with two elliptic modular forms I, Inventiones Math., 79 (1985), 159-195.0573.1002086m:11097 · Zbl 0573.10020
[12] H. HIDA, Nearly ordinary Hecke algebras and Galois representations of several variables, JAMI Inaugural Conference Proceedings, 1988 May, Baltimore, Supplement of Amer. J. Math., (1990), 115-134.0782.110172000e:11144
[13] H. HIDA, Modules of congruence of Hecke algebras and L-functions associated with cusp forms, Amer. J. Math., 110 (1988), 323-382.0645.1002989i:11058 · Zbl 0645.10029
[14] H. HIDA, Le produit de Petersson et de Rankin p-adique, Sém. Théorie des Nombres, 1988-1989, 87-102.0721.1102492i:11057 · Zbl 0721.11024
[15] H. HIDA, Algebraicity theorems for standard L-functions of GL(2) and GL(2) × GL(2), preprint. · Zbl 0838.11036
[16] H. HIDA and J. TILOUINE, Katz p-adic L-functions, congruence modules and deformation of Galois representations, Proceedings of the Durham Symposium, July, 1989, LMS Lecture Note Series, 153 (1991), 271-293.0739.1102293c:11027 · Zbl 0739.11022
[17] H. HIDA and J. TILOUINE, Anti-cyclotomic Katz p-adic L-functions and congruence modules, preprint.0778.11061ASENS_1993_4_26_2_189_0 · Zbl 0778.11061
[18] H. HIDA and J. TILOUINE, On the anticyclotomic main conjecture for CM fields, preprint.0819.11047 · Zbl 0819.11047
[19] H. JACQUET, Automorphic forms on GL(2), II, Lecture notes in Math., 278 (1972), Springer.0243.1200558 #27778 · Zbl 0243.12005
[20] N. M. KATZ, p-adic L-functions for CM fields, Inventiones Math., 49 (1978), 199-297.0417.1200380h:10039 · Zbl 0417.12003
[21] T. MIYAKE, On automorphic forms on GL2 and Hecke operators, Ann. of Math., 94 (1971), 174-189.0215.3730145 #8607 · Zbl 0215.37301
[22] [P1] , Convolutions of Hilbert modular forms and their non-Archimedean analogues, Mat. Sbornik, 64 (1988), 574-587 (Russian ; English translation : Math. USSR Sbornik, 64 (1989), 571-584). · Zbl 0677.10019
[23] [P2] , Convolutions of Hilbert modular forms, motives, and p-adic L-functions, preprint, Max-Planck-Institut für Mathematik.
[24] [Sh1] , The special values of the zeta functions associated with Hilbert modular forms, Duke Math. J., 45 (1978), 637-679. · Zbl 0394.10015
[25] [Sh2] , On some arithmetic properties of modular forms of one and several variables, Ann. of Math., 102 (1975), 491-515. · Zbl 0327.10028
[26] [Sh3] , On certain zeta functions attached to two Hilbert modular forms : I. The case of Hecke characters, Ann. of Math., 114 (1981), 127-164. · Zbl 0468.10016
[27] G. SHIMURA, On Eisenstein series, Duke Math., J., 50 (1983), 417-476.0519.1001984k:10019 · Zbl 0519.10019
[28] [Sh5] , On the holomorphy of certain Dirichlet series, Proc. London Math. Soc., 31 (1975), 79-98. · Zbl 0311.10029
[29] [Sh6] , Confluent hypergeometric functions on tube domains, Math. Ann., 260 (1982), 269-302. · Zbl 0502.10013
[30] [Sh7] , Algebraic relations between critical values of zeta functions and inner products, Amer. J. Math., 104 (1983), 253-285. · Zbl 0518.10032
[31] [Sh8] , On the critical values of certain Dirichlet series and the periods of automorphic forms, Inventiones Math., 94 (1988), 245-305. · Zbl 0656.10018
[32] [T] , On Galois representations associated to Hilbert modular forms, Inventiones Math., 98 (1989), 265-280. · Zbl 0705.11031
[33] [W] , Basic number theory, Springer, 1974.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.