×

zbMATH — the first resource for mathematics

Real algebraic curves in the moduli space of complex curves. (English) Zbl 0725.14019
The author studies the moduli space of complex isomorphism classes of real algebraic curves, and its compactification. He shows for genus \(greater\quad than\quad 3\) they are semialgebraic varieties. He discusses in detail the genus 2 and hyperelliptic cases.

MSC:
14H10 Families, moduli of curves (algebraic)
14P05 Real algebraic sets
32G13 Complex-analytic moduli problems
14K10 Algebraic moduli of abelian varieties, classification
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] Abhayankar, S.S. , ”Local Analytic Geometry”. Volume XIV of Mathematics , Academic Press, New York and London, 1964. · Zbl 0205.50401
[2] Abikoff, William , ” The Real Analytic Theory of Teichmüller Space ”. Volume 820 of Lecture Notes in Mathematics, Springer-Verlag, Berlin-Heidelberg-New York, 1980. · Zbl 0452.32015
[3] Alling, Norman L. and Newcomb Greenleaf, ”Foundations of the theory of Klein surfaces” . Volume 219 of Lecture Notes in Mathematics, Springer-Verlag, Berlin-Heidelberg- New York, 1971. · Zbl 0225.30001
[4] Andreotti, Aldo and Per Holm , Quasianalytic and parametric spaces . In Per Holm, editor, Real and complex singularities, Oslo 1976 , pages 13-97, Sijthoff & Noordhoff International Publishers, Alphen aan den Rijn, The Netherlands, 1977. · Zbl 0376.32025
[5] Bers, Lipman , Finite dimensional Teichmüller spaces and generalizations . Bull. Amer. Math. Soc., 5(2):131-172, September 1981. · Zbl 0485.30002 · doi:10.1090/S0273-0979-1981-14933-8
[6] Earle, C.J. , On moduli of closed Riemann surfaces with symmetries . In ” Advances in the Theory of Riemann Surfaces ”. Annals of Mathematics Studies 66, pages 119-130, Princeton University Press and University of Tokyo Press, Princeton, New Yersey, 1971. · Zbl 0218.32010
[7] Fay, J. , ” Theta functions on Riemann surfaces ”. Volume 352 of Lecture Notes in Mathematics, Springer-Verlag, Berlin-Heidelberg -New York, 1973. · Zbl 0281.30013 · doi:10.1007/BFb0060090
[8] Gross, B.H. and J. Harris , Real algebraic curves . Ann. scient. Éc. Norm. Sup. 4e série, 14:157-182, 1981. · Zbl 0533.14011 · doi:10.24033/asens.1401 · numdam:ASENS_1981_4_14_2_157_0 · eudml:82070
[9] Igusa, J.-J. , ” Theta Functions ”. Springer-Verlag, Berlin-Heidelberg-New York, 1972. · Zbl 0251.14016
[10] Klein, Felix , Über eine neue Art von Riemannschen Flächen . Math. Annalen, 10, 1876.
[11] Klein, Felix , Über Realitätsverhältnisse bei der einem beliebigen Geschlechte zugehörigen Normalkurve der \varphi . Math. Annalen, 42, 1892. · JFM 25.0689.03
[12] Klein, Felix , ”Über Riemanns Theorie der algebraischen Funktionen und ihrer Integrale”.- Eine Ergänzung der gewöhnlichen Darstellungen . B.G. Teubner, Leipzig, 1882.
[13] Knudsen, Finn and David Mumford , The projectivity of the moduli space of stable curves. i: preliminaries on ”det” and ”Div” . Math. Scand., 39:19-55, 1976. · Zbl 0343.14008 · doi:10.7146/math.scand.a-11642 · eudml:166481
[14] Knudsen, Finn F. , The projectivity of the moduli space of stable curves. ii: the stacks m sub(g, n) . Math. Scand., 52:161-199, 1983. · Zbl 0544.14020 · doi:10.7146/math.scand.a-12001 · eudml:166839
[15] Knudsen, Finn F. , The projectivity of the moduli space of stable curves. iii: the line bundles on m sub(g, n), and a proof of the projectivity of m - sub(g, n) in characteristic 0 . Math. Scand., 52:200-212, 1983. · Zbl 0544.14021 · doi:10.7146/math.scand.a-12002 · eudml:166840
[16] Lehto, Olli , ” Univalent functions and Teichmüller spaces ”. Volume 109 of Graduate Texts in Mathematics, Springer, Berlin- Heidelberg-New York, 1986. · Zbl 0606.30001
[17] Mumford, D. and Fogarty, J. , ” Geometric Invariant Theory ”. Volume 34 of Ergebnisse der Mathematik , Springer-Verlag, Berlin-Heidelberg- New York, 1982. · Zbl 0504.14008
[18] Mumford, David , ” Curves and Their Jacobians ”. University of Michigan Press, Ann Arbor, Michigan, second printing 1976 edition, 1975. · Zbl 0316.14010
[19] Seppälä, Mika , Complex algebraic curves with real moduli . J. reine angew. Math., 387:209-220, 1988. · Zbl 0638.32020 · doi:10.1515/crll.1988.387.209 · crelle:GDZPPN002205580 · eudml:153032
[20] Seppälä, Mika , Moduli spaces of real algebraic curves . July 1989. Preprint. · Zbl 0645.14012
[21] Seppälä, Mika , On moduli of real curves . In Jean-Jacques Risler, editor, Seminaire sur la Geometrie Algebrique Reelle , pages 85-95, Publications Mathématiques de l’Université Paris VII, Paris VII, 1986. · Zbl 0655.14011
[22] Seppälä, Mika , On moduli of real curves . Rocky Mountain Journal of Mathematics, 14(4), 1984. · Zbl 0564.14012 · doi:10.1216/RMJ-1984-14-4-969
[23] Seppälä, Mika , Quotients of complex manifolds and moduli spaces of Klein surfaces . Ann. Acad. Sci. Fenn. Ser. A. I. Math., 6:113-124, 1981. · Zbl 0456.32014 · doi:10.5186/aasfm.1981.0622
[24] Seppälä, Mika , Teichmüller spaces of Klein surfaces . Ann. Acad. Sci. Fenn. Ser. A. I. Mathematica Diss., 15:1-37, 1978. · Zbl 0407.32010
[25] Seppälä, Mika and Robert Silhol , Moduli spaces for real algebraic curves and real abelian varieties . Math. Z., 201:151-165, 1989. · Zbl 0645.14012 · doi:10.1007/BF01160673 · eudml:174043
[26] Siegel, Carl L. , ” Topics in Complex Function Theory ”. Volume 2 of Wiley-Interscience, John Wiley & Sons, Inc., New York- London-Sydney-Toronto, 1971. · Zbl 0635.30003
[27] Weichhold, Guido , Über symmetrische Riemannsche Flächen und die Periodizitätsmodulen der zugehörigen Abelschen Normalintegrale erstes Gattung . Leipziger Dissertation, 1883.
[28] Wolpert, Scott A. , The geometry of the moduli space of Riemann surfaces . Bull. Am. Math. Soc., New Ser., 11:189-191, 1984. · Zbl 0565.32011 · doi:10.1090/S0273-0979-1984-15264-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.