×

zbMATH — the first resource for mathematics

The index of a holomorphic flow with an isolated singularity. (English) Zbl 0725.32012
The index of a holomorphic vector field Z on the germ of a hypersurface \({\mathcal V}\) with an isolated singularity is defined. The index coincides with the Hopf index in the smooth case. Formulae for the index in terms of the ideals defining Z and \({\mathcal V}\) are given. Topological invariance of the index and the Chern class as well as formulae relating global invariants of the Poincaré-Hopf type are proven.
Reviewer: X.Gómez-Mont

MSC:
32S05 Local complex singularities
32S25 Complex surface and hypersurface singularities
32S50 Topological aspects of complex singularities: Lefschetz theorems, topological classification, invariants
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Abraham, R., Robin, J.: Transversal mappings and flows. New York: Benjamin 1967 · Zbl 0171.44404
[2] Arnold, V., Gusein-Zade, S., Varchenko, A.: Singularities of differentiable maps. I. Basel Boston Stuttgart: Birkh?user 1985 · Zbl 1290.58001
[3] Camacho, C., Lins, A., Sad, P.: Topological invariants and equidesingularization for holomorphic vector fields. J. Differ. Geom.20, 143-174 (1984) · Zbl 0576.32020
[4] Camacho, C.: Quadratic forms and holomorphic foliations on singular surfaces. Math. Ann.282, 177-184 (1988) · Zbl 0657.32007 · doi:10.1007/BF01456970
[5] Camacho, C., Cano, F., Sad, P.: Desingularization of absolutely isolated singularities. Invent. Math.98, 351-369 (1989) · Zbl 0689.32008 · doi:10.1007/BF01388858
[6] Cossart, V., Giraud, J., Urbanz, U.: Resolution of surface singularities. (Lect. Notes Math. vol. 1101) Berlin Heidelberg New York: Springer 1984
[7] Douady, A.: Flatness and privilege. Enseign. Math. II. Ser.14, 47-74 (1968) · Zbl 0183.35102
[8] Edwards, R.: The solution of the 4-dimensional annulus conjecture. (After F. Quinn) In: Four manifolds theory Gordon, C., Kirby, R. (eds.) Contemp. Math.35, 211-264 (1984)
[9] Fischer, G.: Complex analytic geometry. (Lect. Notes Math. vol. 538) Berlin Heidelberg New York: Springer 1976 · Zbl 0343.32002
[10] Friberg, B.: A topological proof of a theorem of Kneser. Proc. Am. Math. Soc.39, 421-426 (1973) · Zbl 0273.57017 · doi:10.1090/S0002-9939-1973-0321124-7
[11] Fuller, F.: A relation between degree and linking number. In: Algebraic topology and geometry. Fox, R., Spencer, D., Tucker, A. (eds.) pp. 258-262. Princeton: Princeton Univ. Press 1957 · Zbl 0086.37301
[12] G?mez-Mont, X.: Universal families of foliations by curves. In: Singularites d’?quations differentielles. Cerveau, D., Moussu, R. (eds.) Asterisque150-151, 109-109 (1987)
[13] G?mez-Mont, X., Luengo, I.: Universal germs of vector fields in ?3 without a separatrix. Invent. Math. (to appear) · Zbl 0774.32019
[14] Griffiths, P., Harris, J.: Principles of algebraic geometry. New York: Wiley 1978 · Zbl 0408.14001
[15] Hector, G., Hirsch, U.: Introduction to the geometry of foliations. Braunschweig Wiesbaden: Vieweg 1981 · Zbl 0486.57002
[16] Hirzebruch, F.: Topological methods in algebraic geometry. Berlin Heidelberg New York: Springer 1966 · Zbl 0138.42001
[17] Kirby, R.: Stable homeomorphisms and the annulus conjecture. Ann. Math.89, 575-582 (1969) · Zbl 0176.22004 · doi:10.2307/1970652
[18] Kirby, R., Siebenmann, L.: Foundational essays on topological manifolds, smoothings, and triangulations. Ann. Math. Stud.88 (1977) · Zbl 0361.57004
[19] Kister, J.: Microbundles are fiberbundles. Ann. Math. II. Ser.80, 190-199 (1964) · Zbl 0131.20602 · doi:10.2307/1970498
[20] Kneser, H.: Die Deformationss?tze der einfach zusammenh?ngenden Fl?chen. Math. Z.25, 362-372 (1926) · JFM 52.0573.01 · doi:10.1007/BF01283844
[21] Milnor, J.: Topology from the differentiable viewpoint. Univ. Press of Virginia 1965 · Zbl 0136.20402
[22] Milnor, J.: Singular points of complex hypersurfaces. Ann. Maths. Stud.61 (1968) · Zbl 0184.48405
[23] Milnor, J.: On the 3-dimensional Brieskorn manifoldsM p,q,r?. In: Knots, groups, and 3-manifolds. Neuwirth, L.P. (ed.) Ann. Math. Stud.84, 175-225 (1975)
[24] Nemytskii, V., Stepanov, V.: Qualitative theory of differential equations. Princeton: Princeton Univ. Press 1972 · Zbl 0089.29502
[25] Quinn, F.: The embedding theorem for towers. In: Four manifold theory. Gordon, C., Kirby, R. (eds.) Contemp. Math.35, 462-472 (1984)
[26] Seade, J.A.: The index of a vector field on a complex surface with singularities. In: Proc. Lefschetz Centennial Conf. Verjovsky, A. (ed.) Contemp. Math.58, part III, 225-232 (1987) · Zbl 0614.32016
[27] Stern, R.: On topological and piecewise linear vector fields. Topology14, 257-269 (1975) · Zbl 0308.57003 · doi:10.1016/0040-9383(75)90007-5
[28] Thomas, E.: Fields of tangent 2-planes on even-dimensional manifolds. Ann. Math.86, 334-347 (1967) · Zbl 0168.21401 · doi:10.2307/1970692
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.