A novel multi-objective evolutionary algorithm with fuzzy logic based adaptive selection of operators: FAME. (English) Zbl 1441.90152

Summary: We propose a new method for multi-objective optimization, called Fuzzy Adaptive Multi-objective Evolutionary algorithm (FAME). It makes use of a smart operator controller that dynamically chooses the most promising variation operator to apply in the different stages of the search. This choice is guided by a fuzzy logic engine, according to the contributions of the different operators in the past. FAME also includes a novel effective density estimator with polynomial complexity, called Spatial Spread Deviation (SSD). Our proposal follows a steady-state selection scheme and includes an external archive implementing SSD to identify the candidate solutions to be removed when it becomes full. To assess the performance of our proposal, we compare FAME with a number of state of the art algorithms (MOEA/D-DE, SMEA, SMPSOhv, SMS-EMOA, and BORG) on a set of difficult problems. The results show that FAME achieves the best overall performance.


90C29 Multi-objective and goal programming
90C59 Approximation methods and heuristics in mathematical programming
90C70 Fuzzy and other nonstochastic uncertainty mathematical programming
Full Text: DOI


[1] Alba, E.; Dorronsoro, B., Cellular Genetic Algorithms (2008), Springer-Verlag · Zbl 1211.90006
[2] Barraza, J.; Melin, P.; Valdez, F.; González, C., Fireworks algorithm (FWA) with adaptation of parameters using fuzzy logic, Nature-Inspired Design of Hybrid Intelligent Systems, 313-327 (2017), Springer-Verlag
[3] Beume, N.; Naujoks, B.; Emmerich, M., SMS-EMOA: Multiobjective selection based on dominated hypervolume, Eur. J. Oper. Res., 181, 3, 1653-1669 (2007) · Zbl 1123.90064
[4] Bokovi, B.; Brest, J., Protein folding optimization using differential evolution extended with local search and component reinitialization, Inf. Sci., 454-455, 178-199 (2018)
[5] Chakraborty, P.; Das, S.; Roy, G. G.; Abraham, A., On convergence of the multi-objective particle swarm optimizers, Inf. Sci., 181, 8, 1411-1425 (2011) · Zbl 1222.90051
[6] Coello, C. A.C.; Lamont, G. B.; Veldhuizen, D. A.V., Evolutionary Algorithms for Solving Multi-Objective Problems (2006), Springer-Verlag
[7] Deb, K.; Karthik, S.; Okabe, T., Self-adaptive simulated binary crossover for real-parameter optimization, Genetic and Evolutionary Computation Conference, 1187-1194 (2007), ACM
[8] Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T., A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput., 6, 2, 182-197 (2002)
[9] Deb, K.; Sinha, A.; Kukkonen, S., Multi-objective test problems, linkages, and evolutionary methodologies., Genetic and Evolutionary Computation Conference, 1141-1148 (2006), ACM
[10] Dorronsoro, B.; Danoy, G.; Nebro, A. J.; Bouvry, P., Achieving super-linear performance in parallel multi-objective evolutionary algorithms by means of cooperative coevolution, Comput. Oper. Res., 40, 6, 1552-1563 (2013) · Zbl 1348.90635
[11] Durillo, J.; Nebro, A.; Coello, C.; García-Nieto, J.; Luna, F.; Alba, E., A study of multiobjective metaheuristics when solving parameter scalable problems, IEEE Trans. Evol. Comput., 14, 4, 618-635 (2010)
[12] Durillo, J.; Nebro, A.; Luna, F.; Alba, E., On the effect of the steady-state selection scheme in multi-objective genetic algorithms, Evolutionary Multi-Criterion Optimization, 183-197 (2009), Springer-Verlag
[13] García, S.; Molina, D.; Lozano, M.; Herrera, F., A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: A case study on the CEC’2005 special session on real parameter optimization, J. Heuristics, 15, 6, 617-644 (2008) · Zbl 1191.68828
[14] Giagkiozis, I.; Purshouse, R. C.; Fleming, P. J., Generalized decomposition, International Conference on Evolutionary Multi-Criterion Optimization, 428-442 (2013), Springer-Verlag
[15] Hadka, D.; Reed, P., Borg: An auto-adaptive many-objective evolutionary computing framework, Evol. Comput., 21, 2, 231-259 (2013)
[16] Huang, V. L.; Qin, A. K.; Suganthan, P. N.; Tasgetiren, M. F., Multi-objective optimization based on self-adaptive differential evolution algorithm, IEEE Congress on Evolutionary Computation, 3601-3608 (2007)
[17] Huang, V. L.; Zhao, S. Z.; Mallipeddi, R.; Suganthan, P. N., Multi-objective optimization using self-adaptive differential evolution algorithm, IEEE Congress on Evolutionary Computation, 190-194 (2009)
[18] Huisman, J.; Rings, J.; Vrugt, J.; Sorg, J.; Vereecken, H., Hydraulic properties of a model dike from coupled Bayesian and multi-criteria hydrogeophysical inversion, J. Hydrol., 380, 1, 62-73 (2010)
[19] Iorio, A. W.; Li, X., Solving rotated multi-objective optimization problems using differential evolution, Australian Conference on Artificial Intelligence, 861-872 (2004)
[20] Li, H.; Zhang, Q., Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II, IEEE Trans. Evol. Comput., 2, 12, 284-302 (2009)
[21] Mart, L.; Garca, J.; Berlanga, A.; Molina, J. M., A stopping criterion for multi-objective optimization evolutionary algorithms, Inf. Sci., 367-368, 700-718 (2016) · Zbl 1428.90184
[22] Melin, P.; Olivas, F.; Castillo, O.; Valdez, F.; Soria, J.; Valdez, M., Optimal design of fuzzy classification systems using PSO with dynamic parameter adaptation through fuzzy logic, Expert Syst. Appl., 40, 8, 3196-3206 (2013)
[23] Ming, M.; Wang, R.; Zha, Y.; Zhang, T., Pareto adaptive penalty-based boundary intersection method for multi-objective optimization, Inf. Scie., 414, 158-174 (2017)
[24] Nebro, A.; Durillo, J., On the effect of applying a steady-state selection scheme in the multi-objective genetic algorithm NSGA-II, Nature-Inspired Algorithms for Optimization, 435-456 (2009), Springer-Verlag
[25] Nebro, A.; Durillo, J.; García-Nieto, J.; Coello, C.; Luna, F.; Alba, E., SMPSO: A new PSO-based metaheuristic for multi-objective optimization, Multi-Criteria Decision-Making, 66-73 (2009)
[26] Nebro, A.; Luna, F.; Alba, E.; Dorronsoro, B.; Durillo, J. J.; Beham, A., AbYSS: Adapting Scatter Search to Multiobjective Optimization, IEEE Transactions on Evolutionary Computation, 12, 4, 439-457 (2008)
[27] Nebro, A. J.; Durillo, J. J.; Coello, C. A.C., Analysis of leader selection strategies in a multi-objective particle swarm optimizer, Congress on Evolutionary Computation, 3153-3160 (2013)
[28] Nebro, A. J.; Durillo, J. J.; Vergne, M., Redesigning the jMetal multi-objective optimization framework, Genetic and Evolutionary Computation Conference, 1093-1100 (2015), ACM
[29] Noorbin, S. F.H.; Alfi, A., Adaptive parameter control of search group algorithm using fuzzy logic applied to networked control systems, Soft Comput., 1-22 (2017)
[30] Ochoa, P.; Castillo, O.; Soria, J., Differential evolution using fuzzy logic and a comparative study with other metaheuristics, Nature-Inspired Design of Hybrid Intelligent Systems, 257-268 (2017), Springer-Verlag
[31] Olivas, F.; Valdez, F.; Castillo, O., Gravitational search algorithm with parameter adaptation through a fuzzy logic system, Nature-Inspired Design of Hybrid Intelligent Systems, 391-405 (2017), Springer-Verlag
[32] Olivas, F.; Valdez, F.; Castillo, O.; Gonzalez, C. I.; Martinez, G.; Melin, P., Ant colony optimization with dynamic parameter adaptation based on interval type-2 fuzzy logic systems, Applied Soft Computing, 53, 74-87 (2017)
[33] Peraza, C.; Valdez, F.; Castillo, O., An improved harmony search algorithm using fuzzy logic for the optimization of mathematical functions, Design of Intelligent Systems Based on Fuzzy Logic, Neural Networks and Nature-Inspired Optimization, 605-615 (2015), Springer-Verlag
[34] Pérez, J.; Valdez, F.; Castillo, O., A new bat algorithm with fuzzy logic for dynamical parameter adaptation and its applicability to fuzzy control design, Fuzzy Logic Augmentation of Nature-Inspired Optimization Metaheuristics: Theory and Applications, 65-79 (2015), Springer
[35] Qi, Y.; Ma, X.; Liu, F.; Jiao, L.; Sun, J.; Wu, J., MOEA/D with adaptive weight adjustment, Evol. Comput., 22, 2, 231-264 (2014)
[36] Reyes, M.; Coello, C., Improving PSO-based multi-objective optimization using crowding, mutation and ϵ-dominance, Evolutionary Multi-Criterion Optimization Conference, 509-519 (2005), Springer-Verlag · Zbl 1109.68631
[37] Roy, S.; Chakraborty, U., Introduction to soft computing: : Neuro-fuzzy and genetic algorithms (2013), Dorling-Kindersley
[38] Santiago, A.; Fraire Huacuja, H. J.; Dorronsoro, B.; Pecero, J. E.; Gómez Santillan, C.; González Barbosa, J. J.; Soto Monterrubio, J. C., A survey of decomposition methods for multi-objective optimization, Recent Advances on Hybrid Approaches for Designing Intelligent Systems. Recent Advances on Hybrid Approaches for Designing Intelligent Systems, Studies in Computational Intelligence, Vol. 547, 453-465 (2014), Springer-Verlag
[39] Toscano Pulido, G.; Coello Coello, C., The micro genetic algorithm 2: Towards online adaptation in evolutionary multiobjective optimization, Evolutionary Multi-Criterion Optimization. Evolutionary Multi-Criterion Optimization, LNCS, Vol. 2632 (2003), Springer-Verlag · Zbl 1036.90548
[40] Valdez, F.; Melin, P.; Castillo, O., A survey on nature-inspired optimization algorithms with fuzzy logic for dynamic parameter adaptation, Expert Systems with Applications, 41, 14, 6459-6466 (2014)
[41] Vrugt, J.; Robinson, B., Improved evolutionary optimization from genetically adaptive multimethod search, Proc. of the National Academy of Sciences of the USA, Vol. 104 (2007)
[42] While, L.; Bradstreet, L.; Barone, L., A fast way of calculating exact hypervolumes, IEEE Trans. Evol. Comput., 16, 1, 86-95 (2012)
[43] Wöhling, T.; Vrugt, J., Multi-response multi-layer vadose zone model calibration using Markov chain Monte carlo simulation and field water retention data, Water Resour. Res., 47, 4, 1-19 (2011)
[44] Yu, X.; Yu, X.; Lu, Y.; Yen, G. G.; Cai, M., Differential evolution mutation operators for constrained multi-objective optimization, Appl. Soft Comput., 67, 452-466 (2018)
[45] Zeng, F.; Low, M.; Decraene, J.; Zhou, S.; Cai, W., Self-adaptive mechanism for multi-objective evolutionary algorithms, Int. Conf. on Artificial Intelligence and Applications, 7-12 (2010)
[46] Zhang, H.; Zhou, A.; Song, S.; Zhang, Q.; Gao, X. Z.; Zhang, J., A self-organizing multiobjective evolutionary algorithm, IEEE Trans. Evol. Comput., 20, 5, 792-806 (2016)
[47] Zhang, Q.; Li, H., MOEA/D: A multiobjective evolutionary algorithm based on decomposition, IEEE Trans. Evol. Comput., 11, 6, 712-731 (2007)
[48] Zhou, A.; Jin, Y.; Zhang, Q.; Sendhoff, B.; Tsang, E., Combining model-based and genetics-based offspring generation for multi-objective optimization using a convergence criterion, Congress on Evolutionary Computation, 3234-3241 (2006), IEEE
[49] Zitzler, E.; Laumanns, M.; Thiele, L., SPEA2: Improving the Strength Pareto Evolutionary Algorithm, Technical Report (2001), ETH, Switzerland
[50] Zitzler, E.; Thiele, L.; Laumanns, M.; Fonseca, C. M.; da Fonseca, V. G., Performance assessment of multiobjective optimizers: An analysis and review, IEEE Trans. Evol. Comput., 7, 2, 117-132 (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.