×

zbMATH — the first resource for mathematics

A phase-field method applied to interface tracking for blood clot formation. (English) Zbl 07250671
Summary: The high shear rate thrombus formation was only recently recognized as another way of thrombosis. Models proposed in [F. F. Weller, Modeling, analysis, and simulation of thrombosis and hemostasis. Heidelberg: Univ. Heidelberg, Naturwissenschaftlich-Mathematische Gesamtfakultät (Diss.) (2008; Zbl 1304.92036); J. Math. Biol. 61, No. 6, 805–818 (2010; Zbl 1205.92010)] take into account this type of thrombosis. This work uses the phase-field method to model these evolving interface problems. A loosely coupled iterative procedure is introduced to solve the coupled system of equations. Convergence behavior on two levels of refinement of perfusion chamber geometry and cylinder geometry is then studied. The perfusion chamber simulations show good agreement with the original results of Weller. The code is implemented in FEM-library deal.ii [G. Alzetta et al., J. Numer. Math. 26, No. 4, 173–183 (2018; Zbl 1410.65363)], which enables distribution of computations to large number of processing units. A scalability and numerical performance study of the loosely coupled iterative procedure is performed, combined with several preconditioners for the linear subproblems.
MSC:
76D05 Navier-Stokes equations for incompressible viscous fluids
76M10 Finite element methods applied to problems in fluid mechanics
76T99 Multiphase and multicomponent flows
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aarts, P. A.; Broek, S. A. van den; Prins, G. W.; Kuiken, G. D.; Sixma, J. J.; Heethaar, R. M., Blood platelets are concentrated near the wall and red blood cells, in the center in flowing blood, Arteriosclerosis 8 (1988), 819-824
[2] Affeld, K.; Reininger, A. J.; Gadischke, J.; Grunert, K.; Schmidt, S.; Thiele, F., Fluid mechanics of the stagnation point flow chamber and its platelet deposition, Artif. Organs. 19 (1995), 597-602
[3] G. Alzetta, D. Arndt, W. Bangerth, V. Boddu, B. Brands, D. Davydov, R. Gassmöller, T. Heister; L. Heltai; K. Kormann; M. Kronbichler; M. Maier; J.-P. Pelteret; B. Turcksin; D. Wells, The deal.II library, version 9.0, J. Numer. Math. 26 (2018), 173-183
[4] Anand, M.; Rajagopal, K.; Rajagopal, K. R., A model incorporating some of the mechanical and biochemical factors underlying clot formation and dissolution in flowing blood, J. Theor. Med. 5 (2003), 183-218
[5] D. Arndt, W. Bangerth, T. C. Clevenger, D. Davydov, M. Fehling, D. Garcia-Sanchez, G. Harper, T. Heister; L. Heltai; M. Kronbichler; R. M. Kynch; M. Maier; J.-P. Pelteret; B. Turcksin; D. Wells, The deal.II library, version 9.1, J. Numer. Math. 27 (2019), 203-213
[6] Balay, S.; Gropp, W. D.; McInnes, L. C.; Smith, B. F., PETSc: Portable, Extensible Toolkit for Scientific Computation-Toolkit for Advanced Computation, Available at http://www.mcs.anl.gov/petsc (2018)
[7] Bangerth, W.; Hartmann, R.; Kanschat, G., deal.ii-a general-purpose object-oriented finite element library, ACM Trans. Math. Softw. 33 (2007), Article ID 24, 27 pages
[8] Barlas, G., Multicore and GPU Programming: An Integrated Approach, Morgan Kaufmann Publishers, San Francisco (2015)
[9] Bodnár, T.; Fasano, A.; Sequeira, A., Mathematical models for blood coagulation, Fluid-Structure Interaction and Biomedical Applications T. Bodnár et al. Advances in Mathematical Fluid Mechanics. Birkhäuser/Springer, Basel (2014), 483-569
[10] Burstedde, C.; Wilcox, L. C.; Ghattas, O., p4est: scalable algorithms for parallel adaptive mesh refinement on forests of octrees, SIAM J. Sci. Comput. 33 (2011), 1103-1133
[11] Casa, L. D. C.; Deaton, D. H.; Ku, D. N., Role of high shear rate in thrombosis, J. Vasc. Surg. 61 (2015), 1068-1080 (2015)
[12] Casa, L. D. C.; Ku, D. N., Thrombus formation at high shear rates, Ann. Rev. Biomed. Eng. 19 (2017), 415-433
[13] Colman, R. W.; Marder, V. J.; Clowes, A. W.; George, J. N.; Goldhaber, S. Z., Hemostasis and Thrombosis: Basic Principles and Clinical Practice, Lippincott Williams & Wilkins, Philadelphia (2005)
[14] Fasano, A.; Sequeira, A., Hemorheology and hemodynamics, Hemomath Modeling, Simulation and Applications 18. Springer, Cham (2017), 1-77
[15] Gross, S.; Reusken, A., Numerical Methods for Two-Phase Incompressible Flows, Springer Series in Computational Mathematics 40. Springer, Berlin (2011)
[16] Guermond, J. L.; Minev, P.; Shen, J., An overview of projection methods for incompressible flows, Comput. Methods Appl. Mech. Eng. 195 (2006), 6011-6045
[17] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda, R. B. Lehoucq, K. R. Long, R. P. Pawlowski; E. T. Phipps; A. G. Salinger; H. Thornquist; R. S. Tuminaro; J. M. Willenbring; A. Williams; K. S. Stanley, An overview of the Trilinos project, ACM Trans. Math. Softw. 31 (2005), 397-423
[18] al., V. Huck et, A2 - Research. Available at http://www.shenc.de/A2-Huck-res.htm
[19] Karypis, G.; Kumar, V., MeTis: Unstructured Graph Partitioning and Sparse Matrix Ordering System, Version 4.0, Available at http://www.cs.umn.edu/ metis, 2009
[20] Key, N. S.; Makris, M.; Lillicrap, D.; eds., Practical Hemostasis and Thrombosis, John Wiley, Chichester (2017)
[21] Kuzmin, D., Introduction to Computational Fluid Dynamics, Available at http://www.mathematik.uni-dortmund.de/ kuzmin/cfdintro/lecture8.pdf, 2010
[22] Li, X.; Lowengrub, J.; Rätz, A.; Voigt, A., Solving PDEs in complex geometries: a diffuse domain approach, Commun. Math. Sci. 7 (2009), 81-107
[23] Mohan, A., Modeling the Growth and Dissolution of Clots in Flowing Blood, PhD Thesis, Texas A&M University, College Station (2005)
[24] Osher, S.; Fedkiw, R., Level Set Methods and Dynamic Implicit Surfaces, Applied Mathematical Sciences 153. Springer, New York (2003)
[25] Reinders, J., Intel Threading Building Blocks: Outfitting C++ for Multi-Core Processor Parallelism, O’Reilly, Sebastopol (2007)
[26] Sakariassen, K. S.; Orning, L.; Turitto, V. T., The impact of blood shear rate on arterial thrombus formation, Future Sci. OA 1 (2015), Article ID FSO30
[27] Sethian, J. A., Level Set Methods and Fast Marching Methods. Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science, Cambridge Monographs on Applied and Computational Mathematics 3. Cambridge University Press, Cambridge (1999)
[28] Tokarev, A. A.; Butylin, A. A.; Ataullakhanov, F. I., Platelet adhesion from shear blood flow is controlled by near-wall rebounding collisions with erythrocytes, Biophys. J. 100 (2011), 799-808
[29] Tokarev, A.; Sirakov, I.; Panasenko, G.; Volpert, V.; Shnol, E.; Butylin, A.; Ataullakhanov, F., Continuous mathematical model of platelet thrombus formation in blood flow, Russ. J. Numer. Anal. Math. Model. 27 (2012), 191-212
[30] Turek, S., Efficient Solvers for Incompressible Flow Problems. An Algorithmic and Computational Approach, Lecture Notes in Computational Science and Engineering 6. Springer, Berlin (1999)
[31] Weller, F., Modeling, Analysis, and Simulation of Thrombosis and Hemostasis: PhD Thesis, Ruprecht-Karls-Universität, Heidelberg (2008)
[32] Weller, F. F., Platelet deposition in non-parallel flow: influence of shear stress and changes in surface reactivity, J. Math. Biol. 57 (2008), 333-359
[33] Weller, F. F., A free boundary problem modeling thrombus growth. Model development and numerical simulation using the level set method, J. Math. Biol. 61 (2010), 805-818
[34] Xu, Z.; Chen, N.; Shadden, S. C.; Marsden, J. E.; Kamocka, M. M.; Rosen, E. D.; Alber, M., Study of blood flow impact on growth of thrombi using a multiscale model, Soft Matter 5 (2009), 769-779
[35] Zlobina, K. E.; Guria, G. Th., Platelet activation risk index as a prognostic thrombosis indicator, Scientific Reports 6 (2016), Article ID 30508
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.